Electrical Power & Protection


Safety and electrical monitoring in the hydrogen industry

Technews Industry Guide: Sustainable Manufacturing 2024 Electrical Power & Protection

The hydrogen industry is young, and the technology is still developing. One growing area is the efficient and safe operation of electrolysers and fuel cells. Due to the explosive character of hydrogen, this is a very important task. In addition to measuring the gas concentration and the flow of fluids, the monitoring of the electrical characteristics of an electrolyser, rectifier or fuel cell has become common. This is easier and safer than measuring gas and fluids only.

A major player in this area is the German manufacturer, Muetec Instruments. This is the only company offering SIL2-certified transmitters for electrical monitoring up to 1500 V, allowing safety loops for electrolysers and fuel cells to be built that are redundant and failure proof. These transmitters protect operators from electrocution, and safeguard the equipment from damage by voltage peaks. To achieve this, Muetec’s SIL2 transmitters generate safe alarms and shutoffs based on the measured voltage or current. They are easy to program, and only need to be checked and recalibrated after ten years.

Monitoring of earth faults

A common application when monitoring electrolysers is the detection of earth faults. Nearly all electrolysers, and many fuel cells, are insulated from ground. With fluids running through the system, there is always the risk that an electrical potential builds up on a stack. Touching the device can be dangerous, and operators need to be alerted before they are at risk. If a stack gets electrically out of balance, this is also an indication that there is a leakage of fluid in the system.

To realise a safe earth, fault monitoring of one high voltage transmitter (HVT) is done per stack by measuring the outside electrodes against earth in the middle of the stack.

Single cell voltage monitoring

The most complete system to monitor an electrolyser is the single-cell voltage monitor. This is also the most expensive, and some manufacturers, especially of PEM electrolysers, use it during the prototype phase only. Each cell is individually connected with the central measurement device, and the voltage values of all cells are recorded in real time. For a large electrolyser this means that thousands of measurement values are stored per second to analyse and detect inefficiencies, possible defects and cell deterioration. By comparing the voltage measurement of each cell and analysing how it develops over time, it is possible to detect membrane pinholes and other defects, and plan preventive maintenance.

Critical success factors for this form of measurement are the speed of data processing based on the use of fast glass fibre connections, high processing power, and the visualisation and analysis of the data set.

Safe monitoring of the rectifier

Electrolysers are supplied with the necessary energy from a rectifier. A second rectifier, the polarising rectifier, is used to ramp up the system. Several manufacturers, including companies like Siemens Energy, constantly measure the current on their rectifiers with Muetec’s safe HVT transmitters. Current measurement is important as it can ensure that a minimum current is always running through the system. This prevents hydrogen ions from recombining in the electrolyser to form atoms, creating a risk of explosion.

Safe total voltage measurement

Both rectifier and electrolyser manufacturers regularly integrate safe total voltage transmitters into their setup. They measure the electrical characteristic at the handover point between rectifier and electrolyser, therefore between the work of two different suppliers. Usually, they generate a pre-alarm at 60 V, which is when touching the system becomes dangerous. The main alarm is normally set above the maximum voltage of the system, around 800 to 1200 V for a large AEL/AEM electrolyser, or less for a PEM or SOEC. The analogue output is used for a standardised measurement of the voltage, and MODBUS RTU for connection to the PLC.

Monitoring of fuel cells

What works well for electrolysers is also becoming common in fuel cells − the electrical monitoring of their total voltage. Multiple setups are available, depending on the technology used in the fuel cell, for example protecting the DC link and inverters against overvoltage or overload. Muetec’s high-voltage transmitters are also used to prevent a critical reverse-supply by feeding back some energy into the fuel cell in case of an error on the downstream side. These safety loops are becoming more and more common for large stationary fuel cells and for fuel cells on ships.

No accidents, and an efficient operation

The use of SIL2 transmitters for safe voltage and current monitoring brings multiple benefits. Making a design safe is now much easier for engineers, accidents are prevented, and data for efficient operation of the system is collected. Safe electrolysers, rectifiers and fuel cells are becoming common.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.

Read more...
Real-time modelling is the key to a resilient, bi-directional energy grid
Schneider Electric South Africa Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.

Read more...
Shielding data centre growth from the looming power crunch
Schneider Electric South Africa Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.

Read more...
Circuit breaker innovations
Schneider Electric South Africa Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.

Read more...
Common battery tester errors and what they mean
Comtest Electrical Power & Protection
Battery testers help quickly assess battery health, diagnose issues, and determine whether a battery needs a charge or replacement. This guide covers some of the most common battery tester errors, what they mean, and what can cause them.

Read more...
Cathodic protection design considerations that influence ESG outcomes
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Major infrastructure like wharves, bridges, pipelines and tanks are at constant risk of corrosion. David Celine, managing director of cathodic protection specialist Omniflex, explains how CP system design can support ESG commitments, while simultaneously lowering costs and improving maintenance capabilities.

Read more...
Africa’s digital future – building critical power infrastructure for data centre leadership
Electrical Power & Protection
Africa’s digital economy is growing rapidly, and countries like South Africa, Nigeria and Kenya are leading the way. However, a major challenge remains. Sustainable and reliable power systems must form the backbone of Africa’s digital growth to ensure lasting success.

Read more...
Recovering condensate and waste heat
Electrical Power & Protection
According to Associated Energy Services, strong partnerships with thermal energy users optimise opportunities to benefit from condensate return. waste heat recovery and the prevention of system contamination.

Read more...
Quantum engine powered by particle entanglement
Electrical Power & Protection
In a landmark achievement that signals a new era in energy research, a team of physicists in China has carried out the first successful test of a quantum engine powered by particle entanglement. This technological breakthrough represents a fundamental shift in our approach to energy production.

Read more...
Advancing sustainability in South Africa’s fruit industry
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric, together with Technoserve Medium Voltage, has implemented its advanced SF6-free MV switchgear at Two-a-Day situated in Grabouw in the Overberg district.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved