Editor's Choice


Case History 193: The big dipper.

I&C July 2024 Editor's Choice

This article gives an example of an important flow control system for flare gas in a petrochemical refinery. The control was suffering from serious problems, often cycling severely, and at other times the flow process variable (PV) would suddenly move quite a lot away from the setpoint (SP).

Figure 1 shows the ‘Closed Loop Test As Found’. This was a test where SP step changes were made with the controller in automatic, with the same tuning parameters that were in the controller when we started the tests.

This was a very interesting test. It showed that when the SP was stepped upwards in the valve opening direction, the tuning was in fact quite good, with quite a fast response, which was typical of a normal fast control of a flow process. However, once at SP, the flow would suddenly drop violently, sometimes by over 20%, and then after about five seconds would recover. From the controller output (PD) trace, it can be seen that the controller did not react very quickly to these swings. This would immediately lead one to suspect that there was a huge problem somewhere in the positioner or in the valve.

Another observation in the first part of the test where the SP changes were increasing was that the valve could be two or three times oversized. This was based on the ratio of the magnitudes of the step in PV to that of the PD. This ratio is referred to as process gain (PG).

On a self-regulating class of process, such as flow, one can consider a valve to be properly sized if the PG is unity. If it is greater than unity, then the valve may be oversized. If it is less than unity, it indicates that the transmitter range is too wide. Explanations on the science behind this are given in my Loop Signature series.

Now we come to the second part of the test, where the SP steps were in the opposite direction, reducing the flow, and the valve was moving in the closing direction. The behaviour of the process was now very different, with the flow not reacting in the same way as before. Instead, the process almost appeared to be cycling badly, with the PV frequently performing the same type of violent swings that were observed in the first part of the test.

The behaviour of the PD was also different. It appeared to be ramping down fairly slowly but with a fairly small, almost saw-tooth cycle superimposed on it. It no longer responded quickly to the SP steps. This could have meant that the valve was very sticky when closing.

Figure 2 is the recording made when we performed the Open Loop test. The controller was placed in manual, and the PD was stepped. Again, it was fascinating to see what the valve did.

The following could be observed on the steps of PD moving upwards:

• The PV responded quickly to the steps, but with a huge spiked overshoot of almost 40%.

• The PG on each of the steps was about 2, which indicated the valve was about two times oversized (which is in fact not terribly serious).

• The installed valve characteristics were linear, which was good. The PG was the same for each of the steps. If it had varied, it would have indicated non-linear installed valve characteristics, which could have caused control difficulties as loops were tuned for only one value of PG.

The steps of PD moving downwards showed a completely different story:

• The valve stuck many times after the PD had been stepped.

• It sometimes took several steps of the PD before the valve actually responded and did move the PV down. This confirmed the previous observation that the valve was very sticky when closing.

• The valve would frequently move down in big spikes and then back up.

• On one occasion, when the PD was stepped down the valve instead of closing, it actually opened for a few seconds before starting to move in the closing direction again.

The final conclusion, of course, is that the open loop test confirmed the observations made after the closed loop test, and there was a major problem occurring in the valve or positioner. This needed to be sorted out if good control was to be achieved.

I called this study ‘The Big Dipper’, as it reminded me of a ride in a fairground where you suddenly and violently go up and down. Once again, we have an excellent example of how important it is to analyse a loop’s behaviour properly before even thinking of tuning.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet. His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Machine health monitoring with ifm
ifm - South Africa Editor's Choice IT in Manufacturing
With ifm’s machine health monitoring, early signs of wear can be detected and unexpected failures prevented. Combined with equipment preventive maintenance software, interventions can be scheduled proactively to avoid costly downtime.

Read more...
Powering Africa’s sustainable mining
VEGA Controls SA Editor's Choice Level Measurement & Control
At the 2026 Mining Indaba in Cape Town, one theme rises above all others, progress through precision. For VEGA, a global leader in process instrumentation, this mission aligns perfectly with its core purpose, which is turning measurement into meaningful progress.

Read more...
PCS Global delivers turnkey MCC installation in Botswana
PCS Global Editor's Choice PLCs, DCSs & Controllers
PCS Global is delivering a turnkey containerised MCC installation for a major copper mining operation in Northwest Botswana.

Read more...
SEW-EURODRIVE transforms drivetrain uptime
SEW-EURODRIVE Editor's Choice Motion Control & Drives
The DriveRadar IoT Suite from SEW-Eurodrive is an ideal solution for industrial condition monitoring. This powerful ecosystem of intelligent sensors, edge devices and cloud-based analytics ensures that customers have full visibility and control of their operations.

Read more...
Loop Signature 31: Non-linearity in control loops (Part 2)
Michael Brown Control Engineering Fieldbus & Industrial Networking
This article is a continuation of Loop Signature 30 published in the last issue in this series, exploring reasons for non-linearities which may be encountered in feedback control loops

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Editor's Choice Motion Control & Drives
Special machine manufacturer, ruhlamat Huarui Automation Technologies has unveiled the second generation of its mass production line for flexible stators with bar winding (pins). This enables an extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...
Heavy impact, smart control
Axiom Hydraulics Editor's Choice Pneumatics & Hydraulics
Every now and then a project lands on your desk that’s equal parts heavy machinery and fine control - a tantalising mix for any engineer. A client approached Axiom Hydraulics with a project exactly like this.

Read more...
Pneumatics makes a technological leap with the proportional valve terminal
Festo South Africa Editor's Choice Motion Control & Drives
Festo continually makes bold technological leaps to keep pace with global advancements. Controlled Pneumatics is redefining the boundaries of compressed air technology to meet the demands of today’s most advanced applications.

Read more...
Driving fluid power forward
Editor's Choice News
The National Fluid Power Association is developing its latest Industrial Technology Roadmap for 2025, showing how hydraulics and pneumatics are changing to meet new industrial demands.

Read more...
World’s hottest engine
Editor's Choice Motion Control & Drives
Scientists have built the world’s smallest engine. It’s also the world’s hottest. It could provide an unparalleled understanding of the laws of thermodynamics on a small scale, and provide the foundation for a new, efficient way to compute how proteins fold.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved