Editor's Choice


Edge computing: Introducing AI into the factory

I&C July 2024 Editor's Choice IT in Manufacturing

As AI evolves, it is evident that the most powerful models will be cloud-based, and hosted in data centres that are beyond the control of the average business. Not only that, there is now a reliance on connectivity that makes cloud-based AI feasible only in certain use cases within the manufacturing environment. Essential plant safety and control systems, for example, cannot rely on the internet. Certain control functions and scada might exist in the cloud, but care needs to be taken to ensure that these systems have redundancy, and can fail in a way that does not severely disrupt manufacturing operations or introduce a safety risk. The practical application of AI in manufacturing control and automation will only be possible if some of the computing workloads can be brought onto the plant, inside the firewall and inside the plant network.

Edge computing involves processing data close to where it is generated, rather than relying on the cloud. In practice, this means that sensors are connected to local computing devices using the plant network where latency is low, network congestion can be controlled, and connectivity can be relied on. Edge computing can therefore improve the reliability of advanced computing such as AI in the context of factory systems.

There are several benefits to edge computing in the factory:

• Improved reliability: By minimising dependency on internet connectivity and data centres outside your control, you can ensure that factory operations continue smoothly at all times.

• Enhanced security: Privacy and cybersecurity are of paramount importance to any industrial operation, and you need to be vigilant about information you expose to the internet. Edge computing can bring certain computing workloads inside the firewall, thereby lowering the risk of cybersecurity attacks.

• Cost efficiency: Once the investment in an edge AI solution has been made, there is no reliance on expensive subscription-based software pricing for external services, with the associated uncertainty of runaway costs and future cost of ownership.

• Performance: By reducing latency and having dedicated edge devices, performance levels can be guaranteed within the factory boundary.

Practicality of AI on the edge

‘AI on the edge’ refers to deploying AI models directly onto edge processors. Not all use cases for AI are feasible on the edge, but several are. For example, condition monitoring that is based on machine learning is ideally suited for edge devices, and there are many proven examples where this is already working. Similarly, image and video recognition technologies can usually be run on dedicated edge processors without reliance on the cloud.

In contrast, the most powerful AI transformers such as large language models (LLMs) will certainly need a cloud connection, at least for now. As AI transformers evolve, it is interesting that there may be viable use cases for small language models (SLMs) deployed on edge devices. SLM performance can approximate that of LLMs, provided they are tuned for a specific knowledge domain. It is likely that we will soon see SLM models deployed to mobile phones and other consumer devices.

Types of edge AI technologies

AI is an imprecise term that encompasses a group of loosely related technologies. Each of these AI technologies is similar in some ways, but at their heart they can be quite different in the way they work. AI models can be as diverse as neural networks, transformers (generative AI such as large and small language models), decision trees, or any combination of these. The proliferation and diversity of AI technologies is likely to increase and become even more complex going forward as industry adopts these technologies, while research delivers better ways to combine hybrid models with each other.

Typically, AI on the edge comprises the following:

• Data collection: From sensors and cameras, IoT devices and other real-time data sources.

• Data preprocessing: Cleaning and preparing of the data into a format suitable for the AI model.

• Model interfaces: Feeding the data into the AI model, validating the output, and processing the resulting actions in the form of alerts, changing setpoints or adjusted machine parameters.

• Analysis and visualisation: Allowing humans to easily view and interpret the performance of the AI model. This allows for further fine tuning of the model by closing the loop with human validation.

Edge hardware

Edge hardware is evolving rapidly with AI-centric processors from companies such as NVIDIA. This is clearly a space to watch. However, extreme processing power is not necessarily a prerequisite for edge AI; it is possible to deploy certain AI technologies onto a Raspberry Pi using a Docker container.

Edge software

Edge software architectures are also evolving.

Apart from relatively constrained applications like machine condition monitors or image recognition devices, deploying an advanced and bespoke AI model onto an edge device involves more than just installing software, then setting and forgetting it. You need to consider the entire future lifecycle involving model design, development, testing, deployment, and maintenance. In this regard, it is a good idea to discuss your requirements with your automation software vendor to evaluate if their platform is suited as a standard. Any gaps may need to be addressed with third-party solutions. Evaluating which is best for you may be a complex process, especially as the AI goalposts are always going to be shifting. Do not underestimate the complexity of implementing standardised infrastructure, processes and model architectures, and integrating these into your corporate IT environment where data management and cybersecurity are vital.

Organisational impact

I have written in the past about the importance of bringing together operations technology (OT) and information technology (IT) groups within typical manufacturing organisation structures. With any advanced AI solution, there is another key stakeholder group: the data scientists who will build the AI models. AI models generally need to be trained, tuned, optimised, tested and validated before being deployed into production. Once a model has been developed, deploying it to edge devices and monitoring its performance in the real world, together with the need to recycle models with experience gained, can be a complex process to manage. Who will the data scientists report to in your company?

Conclusion

Edge AI holds many benefits for industrial applications. However, the complexity of deploying these technologies can be high, especially when considering hardware standardisation, software architecture, model development, training and deployment, organisational factors, and finally maintaining the models. In this regard, it is a good idea to partner with your vendor to see how best to leverage their experience and proven platforms before deploying your AI to the edge.


About Gavin Halse


Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Time-sensitive networking
RJ Connect Editor's Choice Fieldbus & Industrial Networking
In this article, we will explore what is driving the rise of time-sensitive networking, how it is reshaping industrial efficiency, the challenges when deploying this technology, and ways to tackle these challenges.

Read more...
Loop Signature 30: Nonlinearity in control loops (Part 1)
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
If nonlinearity occurs it means that if one is to carry on controlling with the same response to changes in load or setpoint, then the tuning of the controller will also need to be adjusted to meet the new conditions.

Read more...
Precision in paper processing
VEGA Controls SA Editor's Choice Level Measurement & Control
Paper manufacturing is a demanding process that relies on consistency, precision and control at every stage. The VEGABAR 82 pressure transmitter is well-suited to these harsh environments.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
A South African legacy in telemetry
Interlynx-SA Editor's Choice Industrial Wireless
Telemetry is becoming a vital component of industrial strategy, allowing companies to harness real-time data to optimise processes and reduce waste. One company leading this technological shift is Interlynx.

Read more...
Case History 199: Another example of the effectiveness of cascade control
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
In my last article I wrote about how cascade control systems can effectively overcome valve problems. This article gives another example of how a temperature control was able to perform well, in spite of really severe valve problems.

Read more...
Upgrading legacy automation
Omron Electronics Editor's Choice Fieldbus & Industrial Networking
Legacy automation is characterised by technology in the later stages of its useful life. As new automation technologies continue to emerge and interconnect at an exponential rate, failing to integrate these technologies can widen the gap between the competitive and the obsolete.

Read more...
Planetary gear units for high torque requirements
SEW-EURODRIVE Editor's Choice Motion Control & Drives
Packing a compact design, along with high torque and low-speed outputs, the new SEW PPK and SEW P2.e planetary gear units from SEW-EURODRIVE offer new capabilities in continuous heavy-duty applications where space is at a premium.

Read more...
These robots crawl into every nook and cranny
DNH Tradeserve t/a DNH Technologies Editor's Choice Motion Control & Drives
Inuktun's small crawler robot magnetically sticks to metal walls and is able to move in all directions. It carries cameras, sensors and tools for inspection or maintenance work in tight pipes and on the outer hulls of tanks or ships. All crawler modules and cameras are equipped with brushed DC motors from Swiss drive specialist, maxon using various motor-gearhead combinations.

Read more...
Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved