Electrical Power & Protection


Optimising green hydrogen production

May 2024 Electrical Power & Protection

A recent Markets and Markets research report titled ‘Green Hydrogen Market, Industry Size Forecast Report’ outlines that the segment is set to reach $7,3 billion by 2027, growing at 61% CAGR. This growth is driven by lowered production of renewable energy costs, development of electrolysis technologies, and demand from fuel cell electric vehicles (FCEVs) and the power industry.

However, the report also warns that hydrogen as a fuel source has not gained widespread acceptance. “The technologies required to use hydrogen efficiently are still in the developing phase, or are working models. The demand for green hydrogen currently is limited to the developed and developing countries that are a part of the net-zero emissions pact,” notes Markets and Markets.

As it stands, one of the major obstacles in the green hydrogen process is the ability to achieve optimal fuel and air distribution to the Proton Exchange Membrane (PEM) stack. A PEM stack uses electricity to turn water into oxygen and hydrogen by electrolysis. The stack is therefore the core working element of the electrolyser. The more stacks you have, the more hydrogen you can produce.

Process automation systems such as AI algorithms and data intelligence, together with a software-centric universal automation offer based on the IEC61499 standard for interoperability and portability, optimise the complex green hydrogen production processes by predicting and controlling parameters. This increases efficiency, quality and safety, while reducing capex, and accelerating faster time to market.

A whitepaper by Schneider Electric entitled ‘How Technology Can Advance Green Hydrogen’ outlines three crucial steps to successfully transitioning to green hydrogen:

• Improving knowledge to drive design and engineering results.

• Ensuring safety and efficiency to optimise operations.

• Developing and implementing requirements for green certification.

Producing hydrogen through electrolysis has been possible for a long time. However, green hydrogen is still implemented on a smaller scale than its renewable energy peers. One of the major stumbling blocks is the scaling-up process, a challenge faced by many new technologies. Transitioning from small-scale viability demonstrations to large-scale industrial processing requires a shift from strictly scientific and technological obstacles to logistical challenges.

The second challenge, safety, sees industry acknowledging the risks associated with green hydrogen. Importantly, green hydrogen also possesses features that make it safer to handle than conventional fuels like gasoline and diesel.

When used correctly, hydrogen’s versatility and strength as an energy carrier allow it to be used directly to power fuel cells or to store excess energy from renewable sources. Large amounts of hydrogen can be stored in tanks as high-pressure gas, and more significant amounts can be stored as a liquid at low pressures and cryogenic temperatures. That said, any system used to handle hydrogen must address the relevant safety hazards unique to its material properties.

Looking at green certification, the challenge for producers is to ensure all produced hydrogen is green and certified for off-takers. Since handling hydrogen is similar to handling natural gas, these challenges can be solved with technology solutions that have a long and proven history in the oil and gas industry. Digitalisation will play a significant role in resolving these challenges, and at the same time will facilitate more efficient and immediate collaboration.

There are a number of key technology solutions that can play an important role in green hydrogen production. These include:

• Process modelling and integrated engineering using a digital twin.

• A combined safety, power, and process control system.

• AI and machine learning (ML to improve analytics for optimised asset performance).

• Blockchain to enable verifiable green certification.

To view the white paper visit https://tinyurl.com/rf7spr7w


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Rail electrification and EV solutions for integrated transport systems
Electrical Power & Protection
A comprehensive range of solutions for rail electrification and electric vehicles is available from leading technology provider ABB, contributing significantly to integrated and sustainable transport systems.

Read more...
PPS delivers containerised distribution board for Western Cape hybrid power project
Electrical Power & Protection
South African electrical enclosure specialist Power Process Systems has successfully completed the design, fabrication and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project on a site in the Western Cape.

Read more...
The choice of a thermal carrier is critical for optimal processing
Electrical Power & Protection
Historically steam, fuelled by coal, has been the most prevalent thermal carrier in South African industry. However, times are changing, with the manufacturing and processing sector needing to review the energy reticulation systems and thermal carriers currently in use.

Read more...
ABB’s blueprint for a net zero future
Electrical Power & Protection
ABB’s Mission to Zero is a strategic initiative aimed at achieving a sustainable future characterised by zero emissions, zero accidents and zero waste.

Read more...
Hybrid DCS for an evolving industrial landscape
Schneider Electric South Africa PLCs, DCSs & Controllers
Today’s industrial automation continues to evolve at a blistering speed, which means traditional DCSs have to keep up to ensure continuous integration into modern, digital infrastructure.

Read more...
How South Africa’s transformer manufacturing industry can fill a gaping infrastructure gap
ACTOM Electrical Machines Electrical Power & Protection
South Africa’s energy transition is accelerating the demand for power transformers. However, this shift toward renewable energy is exposing a critical infrastructure gap: a severe shortage of transformers.

Read more...
General-purpose 350 W AC-DC power supply
Electrical Power & Protection
The TDK-Lambda GUS350 series of compact single-output general-purpose power supplies addresses the need for an economically priced product while maintaining reliability and quality.

Read more...
Ground-breaking battery tester
Comtest Electrical Power & Protection
Midtronics offers the proven MVT handheld battery tester. This revolutionary tool, powered by MDX-AI, is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Green hydrogen could be the missing link in powering the future of technology
Electrical Power & Protection
Green hydrogen has numerous applications across multiple industries. It also has the potential to provide a clean energy source to power future technology, with far-reaching implications for both industry and society.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved