Electrical Power & Protection


Mesh networks: a multidirectional electrical superhighway

April 2024 Electrical Power & Protection


Nishandra Baijnath, systems architect, Power Systems, Anglophone Africa at Schneider Electric.

Today, many power industry stakeholders are faced with mounting requirements for improved grid reliability, resilience and distribution efficiency. It is a challenge which requires power service providers to rethink their infrastructure. Enter mesh networks, which can overcome the limitations of traditional star networks (also known as Y networks), providing the best of both radial feeder and ringed topologies to offer redundancy, flexibility and robustness in power distribution.

Distribution 101

To understand both the relevance and value of mesh networks for electrical distribution, we need to take one step back, unpacking both radial feeders and ringed topologies.

A radial feeder system is a type of electrical distribution system where power flows unidirectionally from a single source, such as a substation, to multiple loads, like consumers. Imagine a tree; its source is the root, and the branches represent the feeder lines that supply power to various endpoints. Due to a radial feeder’s unidirectional nature, there is only one path, which means if there is a fault or interruption, all downstream loads are affected.

On the other hand, a ringed topology is a type of electrical distribution system where there are two feeders or more forming a closed loop or ring. Unlike the radial feeder, a ringed topology provides two paths for power flow. If one feeder fails, the network can be reconfigured so other feeders can still supply power to the loads. Ringed topology is therefore less susceptible to outages. A fault on one part of the ring will not affect the entire system.

Mesh networks, unlike a radial feeder or ringed topology, enables multiple power flow, which can then include traditional grid power generation and distributed energy resources (DERs) from renewables.

A mesh network therefore allows for:

• Multiple sources: these can be generators, substations, battery energy storage systems or renewable energy installations.

• Multiple loads: there can be multiple loads (consumers) connected to the network. These loads could be residential, commercial or industrial.

• Redundancy and flexibility: this is a major differentiator. Should one source fail or a fault occurs, the system can reconfigure itself by rerouting power through alternative paths.

• Isolation and restoration: when a fault such as a short circuit occurs, the network employs techniques like fault location isolation and service restoration (commonly known as FLISR).

Isolation for continuous operations

This fault detection truly sets mesh networks apart. In a typical scenario, the system will detect the fault, which could be a broken conductor or other equipment failure.

It will then isolate this fault by, for example, opening a switch or a breaker at a specific location, which will disconnect the faulty section. The loads, which were initially supplied by the faulted section, are redirected to other available sources. These alternate sources ensure continuity of power supply.

Once the fault is repaired, the system closes the switch or breaker, restoring the original configuration. Mesh networks therefore offer:

• Resilience: mesh networks are highly resilient because they can adapt dynamically to faults.

• Minimised outages: even during faults, most loads remain powered due to alternative paths.

• Efficient utilisation: energy flows through the most efficient paths, minimising losses.

• Scalability: mesh networks can accommodate additional sources and loads as needed.

At Schneider Electric, our EcoStruxure Microgrid Advisor IoT platform optimises the operations of mesh networks and other DERs by leveraging predictive algorithms and real-time data, while enhancing performance, optimising energy usage, and supporting energy security.

This real-time optimisation is achieved through weather data subscription, which allows for 24-hour advance forecasting on what renewable energy production is expected. Furthermore, when the scheduled grid outage period is added, the machine learning algorithms will determine the best way to manage the available energy resources in addition to enhancing the load management based on expected available energy.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.

Read more...
All eyes on the modern DCS platform
Schneider Electric South Africa PLCs, DCSs & Controllers
Modernised DCS platforms are no longer confined to hardware-dependent architectures. These systems have evolved to combine the strengths of both PLCs and DCS while adding capabilities that make them more open, resilient and collaborative.

Read more...
Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Real-time modelling is the key to a resilient, bi-directional energy grid
Schneider Electric South Africa Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.

Read more...
Shielding data centre growth from the looming power crunch
Schneider Electric South Africa Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.

Read more...
Circuit breaker innovations
Schneider Electric South Africa Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.

Read more...
Common battery tester errors and what they mean
Comtest Electrical Power & Protection
Battery testers help quickly assess battery health, diagnose issues, and determine whether a battery needs a charge or replacement. This guide covers some of the most common battery tester errors, what they mean, and what can cause them.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved