Analytical Instrumentation & Environmental Monitoring


Keeping an eye on invisible radiation

March 2024 Analytical Instrumentation & Environmental Monitoring

At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story, as spent nuclear fuel remains radioactive for centuries and requires rigorous safety processes to safeguard against leaks. Gary Bradshaw, a director of radiological surveillance specialist Omniflex, explains the essential role of effective radiological monitoring in nuclear decommissioning.

Nuclear power stations have a service lifetime of 40 to 60 years, but their stories extend beyond this. After the generation period, by which time the reactor and safety systems are approaching obsolescence, plant operators must dismantle them with extreme care. If all goes according to plan, the former station site will remain unusable for at least 50 years.

Decommissioning usually follows this sequence: first technicians remotely remove the highly-irradiated, spent fuel from the reactor core and place it in a steel-lined cell to be safely released from its housing. Robots then segment the reactor and fuel assemblies, chopping it into pieces, before an assay system checks the radiation levels and categorises the materials as low level, intermediate, or still reactive.

The dismantled reactor materials are then encapsulated in lead-shielded steel drums and sent to nuclear storage repositories like those found at the Sellafield nuclear site, which is the centre of British nuclear treatment and disposal, where they will be stored for hundreds of years.

Clearly, radiological monitoring plays a crucial role through every stage of the nuclear timeline because the threat of alpha, beta and gamma radiation leaks is great, even from spent reactor material. It is crucial that nuclear sites deploy proper radiation monitoring technology in both active plant areas and nuclear waste storage facilities to ensure ongoing plant safety. In the event of a leak, radiological monitoring systems enable operators to identify them and respond as quickly as possible, minimising any operational disruptions and safety risks.

Networked radiological monitoring

The Health and Safety Executive (HSE) Office of Nuclear Regulators and the Nuclear Decomissioning Authority (NDA) set strict guidelines for live and historical radiological level monitoring. However, site managers face challenges in networking all their alarms because many of the systems are decades old, and face obsolescence challenges, which are primarily caused by the original manufacturers no longer being in business.

When the National Nuclear Laboratory (NNL) needed to install 130 data collection points to connect radiation protection instrumentation across Sellafield’s site, it was not feasible to use traditional networking solutions. It would have taken months to complete, and would have incurred significant cabling and installation costs.

To overcome these challenges, Omniflex designed the RPN1 radiation monitor interface device in partnership with Steve Parkin, senior project manager for NNL. The RPN1 is a gateway device that simplifies data collection from radiation monitors and connects them to the plant’s top-end scada system. It is a commercial off-the-shelf product that can be installed in minutes, saving thousands of manhours of installation work, and eliminates the need to install kilometres of expensive cabling.

The innovation of the RPN1 helped NNL save over £1m in project costs, reduced the time operators spend in active plant areas, and significantly accelerated the project delivery time. Furthermore, the engineering of the RPN1 led to Omniflex winning an NDA Innovation Award.

Decommissioning nuclear stations is a centuries-long process that requires robust radiation monitoring measures for the duration. Without the proper implementation of radiological monitoring instrumentation with clear and transparent data analysis capabilities, potential catastrophic incidents are bound to occur.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ensuring occupational health and safety in mining
Analytical Instrumentation & Environmental Monitoring
Probe Integrated Mining Technologies (Probe IMT) has partnered with M3SH Technology to offer state-of-the-art environmental monitoring solutions that address these dual requirements.

Read more...
Taming the terrain
Omniflex Remote Monitoring Specialists Industrial Wireless
Effectively monitoring and controlling water distribution networks is crucial if we are to avoid wasting this valuable, life-preserving resource. Wireless telemetry systems play a vital role in this task, collecting data from remote locations and transmitting it to a central control station for real-time monitoring and control.

Read more...
Sustainability of surface water
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...
Cathodic protection system for hazardous environments
Omniflex Remote Monitoring Specialists IS & Ex
When NSW Ports in Australia embarked on a two-year programme to rehabilitate the structures and combat corrosion levels at its Bulk Liquid Berth 1, it commissioned Melbourne-based consultancy Infracorr to deliver a bespoke cathodic protection) system. To deliver the system safely, Infraccor engaged cathodic protection specialist Omniflex to support the hazardous area and remote monitoring aspects of the CP system design.

Read more...
Industrial signal conditioning
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Automation for Industry 4.0, process control, data acquisition, and alarm processing all rely on the conversion of physical signals to a standardised, usable format, that engineered systems can reliably use to manage industrial processes.

Read more...
Assessing the order of events
Omniflex Remote Monitoring Specialists Industrial Wireless
Being able to monitor plant alarms and events in real time, in chronological order, is critical when a plant experiences an avalanche of alarms caused by an abnormal event. Sequence of events modules can be used to cut unplanned plant downtime and reduce operational costs.

Read more...
Signal conditioning is the protective armour between plant and field
Omniflex Remote Monitoring Specialists Sensors & Transducers
Measurement and control of physical properties are the foundation of all critical industrial technologies. Ian Loudon, international sales and marketing manager at remote monitoring specialist, Omniflex explains the challenges of industrial signal conditioning and the importance of safety engineering.

Read more...
Effective dust control in sugar processing
Analytical Instrumentation & Environmental Monitoring
BLT WORLD specialists work in conjunction with the global ScrapeTec team to offer dependable solutions for specific problems at the transfer points of conveyor systems in many industries where dust and material spillage are concerns, including the sugar sector.

Read more...
A benchmark for lubricant reliability in mining
Analytical Instrumentation & Environmental Monitoring
According to Craig FitzGerald from ISO-Reliability Partners, mines can save R500 000 or more on their yearly mill cleaning costs, while electricity consumption can be reduced by up to 12%, and lubricant consumption lowered up by up to 60% when using Bel-Ray Clear Gear lubricant.

Read more...
Protecting Australia’s harbours from a silent threat
Omniflex Remote Monitoring Specialists Industrial Wireless
Omniflex has completed the addition of remote monitoring to the existing cathodic protection (CP) systems at five berths in Port Kembla, Australia. This will enhance their surveillance and provide accurate energy monitoring.

Read more...