Motion Control & Drives


Actualising sustainability with Sibanye-Stillwater

Technews Industry Guide: Sustainable Manufacturing 2023 Motion Control & Drives

Energy Drive is proud to announce that Sibanye-Stillwater is predicted to achieve an energy saving of 60% from August 2021 to August 2031. This is made up of 374,02 GWh from its Shaft 8, Shaft 2 and the upcoming Shaft 5. This equates to 393,7 M kg of CO2, SOx, and NOx emissions reduced, 519,9 Megalitres of water saved, and 256,6 M kg less coal and ash.

The site uses multiple medium voltage (MV) ventilation fans to provide airflow to the mine. The two vent fans at the shaft are directly coupled to two 2240 kW induction motors – a standard squirrel cage motor and a slip ring motor. These fans ran in a duty/standby fashion (common of a ventilation fan system), with one fan running continuously to provide airflow to the shaft. The second fan was used as a standby fan to ensure redundancy. The fans were controlled from the mine’s central Wonderware scada network using inlet guide vanes (IGVs). A third-party energy partner managed the clipping schedule on behalf of the mine, which used the IGVs to reduce airflow during peak times.

When Sibanye and Energy Drive started collaborating, this shaft was quickly identified as a prime candidate for energy savings. Energy Drive engineers saw the opportunity to run both fans together to provide the same airflow as one fan.

While counterintuitive, this concept would allow Energy Drive to run each fan at a much lower speed. Each fan would provide a lower airflow, giving a substantial decrease in power demand. Additionally, running two fans with fully open IGVs allows the fans to return closer to their best operating point (BOP), allowing for greater efficiency. Using the mine’s suggested flow rates, the Energy Drive engineers predicted an energy saving of 60%.

The first challenge to overcome was one of space. Energy Drive’s solutions are typically mobile and self-contained. The VSDs intended for use at the mine were too tall for the typical high cube container, prompting project engineers to consider other solutions. With the benefit of being easily transportable and a familiar footprint for logistics companies – shipping containers were therefore utilised for this purpose. The decision was taken to use the same base dimensions as the 12 merer container, but with a bespoke e-Unit constructed on it. This allowed Energy Drive to accommodate the tall VSDs, while still having an easily mobile and self-contained solution.The electrical solution provided the mine with two modes of operation: VSD operation, and running the fans via their original DOL starters, which is achieved using ring main units (RMUs).

When the e-Unit was completed, a cold-commissioning of the VSDs was performed, and the unit was sent to site. It could then be placed down into its final location, and all the final terminations and cable work could be performed.

The communication between Energy Drive and the site PLC is crucial, as Energy Drive needs to give feedback to the mine on the state of the VSD and receive input from the mine on clipping/non-clipping modes of operation. The Energy Drive PLC can then also act to keep IGVs fully open when under VSD control, to maximise savings for the site.

A data and analytics platform allows Energy Drive engineers to have a live view of both the VSD health and the health of system communications. In the event of anything out of the ordinary, this data is at the fingertips of engineers who can inform mining personnel and dispatch technicians when needed.

A critical part of the commissioning process was establishing a flow baseline for the mine. This was done in collaboration with a third party, who performed a comprehensive set of pitot tube tests to determine the pressure when on IGV control. These tests were done during the clipping and non-clipping stages of operation. The VSD was then tested at three operating speeds, 30 Hz, 27 Hz and 24 Hz. Once all these tests had been performed, a comprehensive comparison between the flows while under IGV control and the flows while under VSD control could be made. The report showed that while under VSD, an operating speed of 27 Hz on each fan would provide the mine with the same flow received during non-clipping operations. Both fans could be run at 24 Hz during clipping times to achieve the same flow rates.

With an original baseline of 1710,3 kW, the fans now run at 605,75 kW. In fact, the results of this project have been so successful that Energy Drive was awarded the Energy Award for Industrial Energy Project of the Year by The Southern African Energy Efficiency Confederation (SAEEC) for 2021.

For more information contact Mark Milne, Energy Drive, +27 31 764 7419, [email protected], [email protected], www.energydrivesystems.com




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

More movement on the market
Motion Control & Drives
If you want to move something, you have to be able to control the movement. When positioning in the nanometre range everything matters and requires high performance motion control. Six years ago, Aerotech therefore set itself the goal of revolutionising the market for precision motion and machine control systems.

Read more...
Highly customisable robotic hand
Motion Control & Drives
NSK and the German Aerospace Centre are developing a robotic hand system that will help automate manual tasks. The concept centres on a customisable robot hand comprising individually configurable finger modules, an industry first.

Read more...
Electrically-operated diaphragm pumping solutions
Bearing Man Group t/a BMG Motion Control & Drives
BMG has extended its range of Ingersoll Rand ARO fluid handling products to include the new EVO series electric diaphragm pumps, designed to enhance energy efficiency and improve fluid handling productivity.

Read more...
Surface drill rigs for Navachab in Namibia
Motion Control & Drives
Epiroc South Africa recently delivered five of six FlexiROC drilling machines to key customer, Navachab Gold Mine.

Read more...
Grease degradation diagnosis technology
Motion Control & Drives
NSK is developing a world-first: a high-accuracy way of rapidly and accurately diagnosing the remaining life of lubricant grease. The company will provide the solution as a mobile app, enabling users to perform the onsite analysis of lubricant condition in bearings and linear motion systems.

Read more...
New compact VFDs with higher power ratings
Motion Control & Drives
Invertek Drives has revealed the extension of its industry-leading Optidrive Coolvert variable frequency drive with the launch of two new compact frame sizes with higher power ratings.

Read more...
Asset reliability care field dominated by WearCheck
Wearcheck Motion Control & Drives
Condition monitoring specialist, WearCheck has solidified its position as a leading player in the asset reliability care sector.

Read more...
Revolutionising manufacturing: the impact of machine learning in robotics
Motion Control & Drives
The integration of machine learning (ML) into robotics has the potential to revolutionise many industries, in particular the manufacturing sector. Yaskawa South Africa is at the forefront of embracing this transformative technology to optimise innovation and propel the manufacturing industry forward.

Read more...
Chain hoist friction clutch tester
WIKA Instruments Motion Control & Drives
WIKA’s FRKPS chain hoist test set is a reliable and efficient way to test the friction clutch on your chain hoist.

Read more...
Why artificial intelligence matters in robotic technology
Motion Control & Drives
Andrew Crackett, managing director of Yaskawa Southern Africa, gives his insight into the role of AI in robotics technology, with its advantages and challenges, and makes predictions for the future.

Read more...