Electrical Power & Protection


Pathways to clean steel

Technews Industry Guide: Sustainable Manufacturing 2023 Electrical Power & Protection

Steel is the backbone of modern infrastructure and one of the world’s most widely used materials. It is also one of the largest culprits of the climate crisis, responsible for about 8% of total global emissions. Yet despite its significance, there is still relatively little action from corporations to address this carbon bomb. The good news is that technological pathways are emerging to decarbonise steel. All that’s needed is investment and dogged commitment from public and private partners to create meaningful demand signals.

Technical pathways to low-carbon steel

The majority of steel is made in blast furnaces. The process requires two inputs: iron ore and coal. They lead to an output of molten iron and carbon dioxide (and other impurities that may be in the ore, including sulphur, phosphorus and silicon). This process produces an impressive amount of emissions. For every ton of crude steel, close to two tons of CO2 are created. What’s more, the global appetite for steel is on the rise. Demand in 2023 is expected to increase 2,3% year over year, up to 82 billion tons, according to the World Steel Association.

Strategies to reduce these emissions can be broadly divided into five buckets:

• Reuse steel: Using recycled steel scrap, rather than virgin-based production, reduces CO2 emissions by 70%. The reason? Raw iron ore requires more energy to remove impurities and creates more process emissions. And we’re already pretty good at recycling steel, as it’s the most recycled metal in the world, saving money, energy and time. Ultimately, recycling alone won’t get us to where we’re going. There is a limit in availability − when steel goes into product, it tends to stay there for a while.

• Carbon capture, use and storage (CCUS): Capturing emissions from industry, either to safely store or repurpose to create new products, will play a critical role in addressing climate change. Today, however, the technologies are nascent and expensive.

• Green hydrogen: Using clean (or green) hydrogen to replace coal in blast furnaces could decarbonise steel completely. This would transform the blast furnace’s byproduct from CO2 to H2O. Two years ago, a pilot project in Sweden, Hybrit, demonstrated the feasibility of a hydrogen steel plant, with the view to ramp up production by 2026.

• Other fuels: Improving the efficiency of the blast furnace process or plugging in less carbon-intensive fuels would help marginally reduce steel emissions. Japanese manufacturer Kobe Steel uses a natural gas blast furnace, which it claims reduces emissions associated with production by 20%. Some industries are suggesting syngas as a potential option. Other organisations are looking to biomass to reduce emissions.

• Electrification: Electric arc furnaces traditionally have been used for scrap steel, as they weren’t able to reach the temperatures needed to process raw iron ore. However, breakthroughs in electrolysis of iron ore are changing that. Boston Metal developed a technology that uses electricity to transform iron ore into molten iron, with oxygen as a byproduct.

Of these pathways, I pick electrification. Of the five options, only green hydrogen and electrification have the potential to remove emissions from the equation entirely. Between hydrogen and electrification, the latter is a more direct use of clean energy (instead of using electricity to make hydrogen to make steel, you could skip a step and use electricity to make steel).

Adam Rauwerdink, senior vice president of business development at Boston Metal elegantly summed up this sentiment: “It really doesn’t make sense to use the limited commodity that’s green hydrogen for steel production if you can skip the middleman and just use the electricity directly. I certainly believe in green hydrogen, just not for steel. Use it elsewhere.”

Call to corporations: sign procurement contracts

The single most important thing corporations can do to accelerate the adoption of clean steel is sign procurement deals. These will help signal demand for clean steel and speed along the complicated process of incorporating new materials. This is already beginning. Volvo, which signed a statement of intent with SSAB in July 2021 to produce green steel made from hydrogen for its cars by 2026; and GM, signed a deal with Nucor in October 2021 to use scrap steel and electric arc furnaces to create net-zero steel.

There are coalitions aiming to signal demand for cleaner steel such as SteelZero, Responsible Steel and the First Movers Coalition, but when it comes to corporations putting pen to paper for specific procurements, the list is embarrassingly thin.

For more information visit www.greenbiz.com

https://www.greenbiz.com/article/pathways-clean-steel




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.

Read more...
Real-time modelling is the key to a resilient, bi-directional energy grid
Schneider Electric South Africa Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.

Read more...
Shielding data centre growth from the looming power crunch
Schneider Electric South Africa Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.

Read more...
Circuit breaker innovations
Schneider Electric South Africa Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.

Read more...
Common battery tester errors and what they mean
Comtest Electrical Power & Protection
Battery testers help quickly assess battery health, diagnose issues, and determine whether a battery needs a charge or replacement. This guide covers some of the most common battery tester errors, what they mean, and what can cause them.

Read more...
Cathodic protection design considerations that influence ESG outcomes
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Major infrastructure like wharves, bridges, pipelines and tanks are at constant risk of corrosion. David Celine, managing director of cathodic protection specialist Omniflex, explains how CP system design can support ESG commitments, while simultaneously lowering costs and improving maintenance capabilities.

Read more...
Africa’s digital future – building critical power infrastructure for data centre leadership
Electrical Power & Protection
Africa’s digital economy is growing rapidly, and countries like South Africa, Nigeria and Kenya are leading the way. However, a major challenge remains. Sustainable and reliable power systems must form the backbone of Africa’s digital growth to ensure lasting success.

Read more...
Recovering condensate and waste heat
Electrical Power & Protection
According to Associated Energy Services, strong partnerships with thermal energy users optimise opportunities to benefit from condensate return. waste heat recovery and the prevention of system contamination.

Read more...
Quantum engine powered by particle entanglement
Electrical Power & Protection
In a landmark achievement that signals a new era in energy research, a team of physicists in China has carried out the first successful test of a quantum engine powered by particle entanglement. This technological breakthrough represents a fundamental shift in our approach to energy production.

Read more...
Advancing sustainability in South Africa’s fruit industry
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric, together with Technoserve Medium Voltage, has implemented its advanced SF6-free MV switchgear at Two-a-Day situated in Grabouw in the Overberg district.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved