IT in Manufacturing


Artificial intelligence: Don’t call me stupid

August 2023 IT in Manufacturing

Ten years ago, I was quite proud of how smart the machines in our factory were. Now, with my current definition of smart, I realise they were quite stupid. Why? Because although they were doing what they were designed to do, the minute they encountered anything unexpected or out of the ordinary, they were stumped. They resorted to asking the operator ‘What is wrong with me?’

Troubleshooting and getting machines back up and running called for smart people − highly skilled operators and experienced software and hardware engineers. The problem is that in the last ten years, these people have become increasingly unavailable.

No more dumb questions

The obvious solution is that machines must get smarter so that they no longer must ask stupid questions. Machine builders engineer systems that can figure out for themselves why they have stopped or why there is a problem. This is already happening to some extent − the use of sensors so that the cartoning machine can tell the operator that it has run out of blanks, for example.

However, you can only get so far with sensors alone. Taking system autonomy to the next level requires artificial intelligence (AI) so that machines can use smart algorithms that can perform sophisticated analytics more akin to human brain circuitry. There is a lot of talk about using AI to emulate human thought processes in industrial applications, but real-time examples of businesses that are successfully unlocking the value of AI are few and far between

Common AI pitfalls

There are two main reasons for this: firstly, companies often fall into the trap of being too generic in their application of AI, and secondly, they do not know how to handle the explosion of data that this broad-brush approach generates. If you are going to look at how AI can be applied in your factory, you should first establish what problem you want to solve, or what improvement you want to make.

Omron’s AI Controller – the world’s first AI solution that operates at the edge with the hardware based on the Sysmac NY5 IPC and the NX7 CPU – will do all of that for you. This controller will record the data at a micro-speed and analyse it using pattern recognition based on process data collected directly on the production line. It is integrated into Omron’s Sysmac factory control platform, which means that it can be used in the machine directly to prevent efficiency losses.

AI in action

As an example, we are currently working with a food industry customer to improve seal integrity. Rather than relying on the operator to recognise when the sealing head is not performing as it should, the packaging machine uses AI to maintain repeatable performance. By applying an AI approach to the sealing operation, we will increase the shelf life by several days, and minimise the occurrence of faulty seals, thereby eliminating the risk of a complete product batch being rejected by retail customers.

Machine learning: bridging the experience gap

So far, I’ve only talked about harnessing AI to make machines smarter. The other development trajectory for AI is making people smarter. Data can be returned from physical assets – in this case highly experienced workers – and pattern recognition applied. Put simply, the skilled operator trains the machine, and the machine trains the unskilled operator.

In our laboratory, we are currently experimenting with AI-driven machines that ask operators to assemble products and record how they do it, to discover the smartest way of performing this task so that this technique can be taught to other operators. Another industrial application for machine learning might be the use of AI to establish what actions the operator should be performing on the machine. If the operator’s hands move in the wrong direction, for example, this generates an alert.

Only smarties have the answer

Enterprises that are well advanced on their digital transformation journey will be best placed to harness the value of AI – whether for identifying and training best practices, predicting failures, or monitoring running conditions. However, businesses at the start of their journey shouldn’t be deterred from exploring AI. When ordering a new machine, make sure that it has the functionality to generate data for AI purposes. You don’t have to know what data you require – you just need to know the right questions to ask your machine builder. Also, start small and take a step-by-step approach – human DNA has evolved over millions of years, so it is unrealistic to expect machines to emulate the human brain in a matter of months.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Unlocking mining efficiency with advanced processing control
IT in Manufacturing
ABB’s Advanced Process Control system, powered by its Expert Optimizer platform, is emerging as a key enabler of smarter, more efficient mining operations.

Read more...
PC-based control regulates innovative dehumidifiers
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
Harnessing AI and satellite imagery to estimate water levels in dams
IT in Manufacturing
Farmers and water managers often struggle to accurately estimate and monitor the available water in dams. To address the challenge, International Water Management Institute researchers have worked with Digital Earth Africa to create an innovation that uses satellite images and AI to get timely and accurate dam volume measurements.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Track busway for scalable data centre power delivery
IT in Manufacturing
The latest generation Legrand Data Centre Track Busway technology addresses the operational pressures facing today’s high-density, AI-intensive computing environments and is being well received by data centre facilities around the world.

Read more...
Poor heat management in data centre design
IT in Manufacturing
Designing a world-class data centre goes beyond simply keeping servers on during load shedding; it is about ensuring they run efficiently, reliably, and within the precise environmental conditions they were built and designed for.

Read more...
It’s time to fight AI with AI in the battle for cyber resilience
IT in Manufacturing
Cybercrime is evolving rapidly, and the nature of cyber threats has shifted dramatically. Attacks are now increasingly powered by AI, accelerating their speed, scale and sophistication. Cybersecurity needs to become part of business-critical strategy, powered by AI to match attackers’ speed with smarter, faster and more adaptive defences.

Read more...
Why AI sustainability must be a boardroom priority
IT in Manufacturing
As South African companies race to harness artificial intelligence for innovation and growth, few are asking the most critical question - the environmental cost.

Read more...
RS South Africa shines spotlight on MRO procurement
RS South Africa IT in Manufacturing
RS South Africa has highlighted the growing pressures faced by procurement professionals responsible for maintenance, repair and operations supplies across the country’s vital economic sectors.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved