IT in Manufacturing


The role of AI in industrial plants

June 2023 IT in Manufacturing

The average modern industrial plant uses less than 27% of the data it generates, according to industry experts at the ARC Advisory Group, Boston. Typically, the remaining 73% of data – much of it produced by plant process-control systems as high-frequency operational control (OT) data – is seldom used. Large volumes of other valuable functional data resides in a company’s general business or IT systems, and still more in the engineering systems (ET), covering specific design information for various assets. In addition to being rarely used, all this data is normally scattered about in separate silos and networks that support little or no cross-referencing.

“This is where the golden opportunity lies, which we can now unlock with new software platforms that simplify better convergence and analysis of OT/IT/ET data,” says Charles Blackbeard, business development manager of ABB Ability Digital. The benefits can be impressive, such as higher production rates from existing assets, less downtime because of predictive maintenance practices, safer operation, reduced energy and other raw material inputs, and lower environmental impact.

Improved convergence of OT/IT/ET data means bringing together previously separate elements, which have now been streamlined and integrated. To achieve this, all OT, IT, and ET data is accumulated in a data lake. Next, related data is contextualised and stored in an industry-specific data model, such as paper making or plastic extruding. Then advanced analytics and industrial AI algorithms are applied to identify correlations not previously visible.

“Industrial AI can play a major role in identifying these patterns and making process predictions,” says Blackbeard. The terms AI and ML are often used interchangeably, which can be confusing at times. AI is the overarching science of making machines and physical systems smarter by embedding artificial intelligence in them. ML is a subset of AI that involves systems gaining knowledge over time through self-learning to become smarter and more predictable, without human intervention.

“As an example, consider a motor, an essential and omnipresent asset in any plant. The motor generates a lot of operational data such as temperature, pressure and flow rate data from various stages of the production process. To acquire a holistic overview of the motor, we integrate information from all these systems and store the relevant pieces in a contextualised data model. This allows us to visualise and activate optimum equipment operation for the best overall process results,” explains Blackbeard.

In a large plant, there can be hundreds of such assets performing many functions and running under different operating conditions with varied design parameters, all with data stored in various systems. Widespread OT/IT/ET integration and contextualisation is therefore critical to obtain a complete view of the plant and carry out valuable analytical tasks that improve operations, asset integrity and performance management, safety, sustainability, and supply chain functions. What emerges are patterns that accurately predict future behaviour, allowing improved process performance.

“We have been using AI/ML to deliver a higher degree of prediction accuracy and optimisation to operations, processes and assets. Combining AI with deep industrial domain expertise empowers operators to run their industrial processes safely, more effectively and more sustainably,” notes Blackbeard. He adds that there are several barriers, perceived and otherwise, that hinder the implementation of advanced analytics. The most common reason for hesitation is the perceived complexity. People mistakenly think it is much more difficult to achieve than it is. Another explanation is the incorrect belief that, to use big data, you must make massive capital expenditures, because it is an ‘all or nothing’ undertaking.

“But it is not. You can start with small steps,” points out Blackbeard. Other reasons might be lack of cooperation between OT, IT and ET people, and just generally slow adoption of new digital tools in many industrial sectors. The fact is that it is easy to join this digital maturity journey, no matter where you are, using data and signals that are already available in your process control, business and engineering systems,” he concludes.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
Rockwell Automation IT in Manufacturing
Rockwell Automation’s 10th State of Smart Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12 months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...
How AI can help solve South Africa’s water crisis
IT in Manufacturing
Climate change, ageing infrastructure, pollution and unequal access are putting intense pressure on the country’s water systems. A powerful question arises: “Can artificial intelligence help us change course?”

Read more...
Backup has evolved, but has your strategy?
IT in Manufacturing
With cyber threats rising and compliance standards tightening, South African organisations are under growing pressure to revisit their data protection strategies. The era of treating backups as a box-ticking exercise is over.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved