Editor's Choice


Case history 186: Don’t always trust valve position feedback signals

March 2023 Editor's Choice PLCs, DCSs & Controllers

I recently encountered an interesting problem in a minerals recovery processing plant. The loop in question was a gas flow control to a burner and was considered very important for the process temperature control. The operators reported that the loop cycled badly in automatic, and was very difficult to control manually. The C&I technicians had tried all sorts of tunings without any improvement.

They included this loop in a series of optimisation tests we were doing as part of the practical we held after they had finished the classroom part of my basic control course. They said they knew that valve problems often cause problems for control but that this loop had a valve position feedback signal on it and the feedback signal closely followed the controller output signal so they were pretty sure it wasn’t the cause of the problem.

The first test we normally carry out is a Closed Loop As Found test and we recorded how the loop responded to setpoint (SP) changes in automatic with the original existing tuning parameters. However, as reported, the loop cycled badly.

The second test was an Open Loop test where the controller is placed in manual, and various steps are then made on the PD (controller output). Part of this test is shown in Figure 1. Unfortunately we did not record the valve position feedback signal. It can be immediately seen that there was in fact a huge valve problem as the valve was not only apparently sticking in places but also had huge ‘almost hysteresis’ of over 10%. I say ‘almost hysteresis’ because it did move a little on most reversals and then stuck whilst the PD had to move a further 10% before the valve moved again. This was the major reason for the cycling.

The question is why the valve feedback signal followed the PD so closely. The answer is, and this is something every control practitioner should be aware of, valve position feedback signals generally do not track the actual valve position, but track the position of the actuator. Now depending on the type of valve and actuator, there are often various linkages joining the two. In this case the valve was a butterfly valve, which is a rotary valve. The actuator was a spring and diaphragm type which has a linear action. To convert the linear action to a rotary action, manufacturers employ various techniques, typically geartrains. Therefore the hysteresis and/or apparent stickiness may actually be due to play in the linkages.

On the steps where the valve, and hence the flow PV, did follow the PD, we were able to see that there was a slight non-linear installed characteristic in the valve, and we were able to establish the process dynamics to allow us to get good tuning parameters. The original tuning parameters were actually too fast and were contributing to the cycling, so it was not only due to the valve problem, and the tuning was also causing instability.

Final Closed Loop test with the new parameters is shown in Figure 2 and is interesting. On the SP step down it can be seen how the valve started moving and then stuck, and the PD then integrated down well over 10% before the valve could move again and bring the PV back to SP. On the SP step up the valve initially didn’t move at all until the PD had integrated up the same amount, and then it moved to get the PV to SP.

This is another example of how important it is to analyse a loop before tuning and to be aware of the various problems that can exist. As I have said many times in the past, the old adage that tuning can solve all problems is nonsense. I have seen the same problem of slippage in the valve linkages many times in the past, and it somis ething that not many C&I; practitioners seem to be aware of.

About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet.

His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature 22: How cyclical disturbances affect a control loop
Michael Brown Control Engineering Editor's Choice
When tuning noisy loops, we recommend in our courses that one should eliminate the noise by editing it out, so the tuning will be done only on the true process response, free of any noise. The controller is controlling the process, and is not controlling the noise.

Read more...
High-performance motion control for teabag packaging machine
Beckhoff Automation Editor's Choice
Teepak relies on PC-based control and drive technology from Beckhoff to set new benchmarks for speed and precision in its teabag packaging machines.

Read more...
VEGA takes the pressure out of water pressure measurement
VEGA Controls SA Editor's Choice
Water treatment systems in metropolitan areas require careful monitoring and management processes across widespread networks. However, process plants choosing VEGA for their process automation know that the company offers more than just precise and reliable pressure sensors and instrumentation.

Read more...
Advantages of wireless storage tank and container tank level monitoring
Turck Banner Southern Africa Editor's Choice
Implementing a tank monitoring system that utilises ultrasonic or radar sensors in a wireless network has many advantages.

Read more...
Case History 191: The weakest link.
Michael Brown Control Engineering Valves, Actuators & Pump Control
Which is the weakest link in a control loop? The answer, without any doubt is that, in most cases, the final control element is the weakest link.

Read more...
Bringing Industry 4.0 to a castings foundry for heavy industries
Editor's Choice
Moving to Industry 4.0 takes time and determination, especially for an established company in a heavy industry. Castings foundry, POK in Mexico has moved toward Industry 4.0 in a series of steps over several years, changing from manual to automated systems for more available, immediate and reliable data.

Read more...
SMOM – the future is here now
Iritron Editor's Choice IT in Manufacturing
In his presentation at the recent MESA Africa conference, Neels van der Walt, business development manager at Iritron, revealed the all-encompassing concept of smart mining operations management (SMOM), and why it is inextricably linked to the future of worldwide mining operations.

Read more...
Navigating disruption in manufacturing
Editor's Choice IT in Manufacturing
When considering IT in manufacturing, the underlying assumption is twofold: first, a wave of valuable maturing technologies can be harnessed to create new business value, and second, the environment in which these technologies will be applied will be relatively predictable, with change following a manageable, evolutionary path. However, recent disruptions have shattered these assumptions.

Read more...
The fascination of movement
Editor's Choice Motion Control & Drives
A motor from Faulhaber provides gentle motion for the finest watches in the world.

Read more...
Complete system for transparent energy monitoring
Beckhoff Automation Editor's Choice Electrical Power & Protection
Transparent energy monitoring reduces both machine downtime and the necessity to oversize the corresponding components. Added to these advantages are simplified preventive maintenance, and increased production efficiency. The wide range of PC-based control technology from Beckhoff offers a solution that can be optimally adapted to individual applications.

Read more...