Electrical Power & Protection


Earth ground testing

February 2023 Electrical Power & Protection

Poor grounding not only increases the risk of equipment failure; it is dangerous. Facilities need to have adequately grounded electrical systems so that in the event of a lightning strike or utility overvoltage, current will find a safe path to earth. Simple grounding systems consist of a single ground electrode driven into the ground. The use of a single ground electrode is the most common form of grounding and can be found outside homes or places of business. Complex grounding systems consist of multiple ground rods; connected mesh or grid networks; ground plates; and ground loops. These systems are typically installed at power generating substations, central offices and cell tower sites.

Locations of resistances

• The ground electrode and its connection: The resistance of the ground electrode and its connection is generally very low. Ground rods are generally made of highly conductive/low-resistance material such as steel or copper.

• The contact resistance of the surrounding earth to the electrode: The USA National Institute of Standards has shown this resistance to be almost negligible provided that the ground electrode is free of paint, grease, etc. and that the ground electrode is in firm contact with the earth.

• The resistance of the surrounding body of earth: The ground electrode is surrounded by earth which conceptually is made up of concentric shells all having the same thickness. Those shells closest to the ground electrode have the smallest amount of area, resulting in the greatest degree of resistance. Each subsequent shell incorporates a greater area, resulting in lower resistance. This finally reaches a point where the additional shells offer little resistance to the ground surrounding the ground electrode.

So based on this information, we should focus on ways to reduce the ground resistance when installing grounding systems.

What affects the grounding resistance?

First, the NEC code (1987, 250-83-3) requires a minimum ground electrode length of 2,5 metres to be in contact with soil. The four variables that affect the resistance of a ground system are:

• Length/depth of the ground electrode.

• Diameter of the ground electrode.

• Number of ground electrodes.

• Ground system design.

Length/depth of the ground electrode

One very effective way of lowering ground resistance is to drive ground electrodes deeper. Soil is not consistent in its resistivity and can be highly unpredictable. It is critical when installing the ground electrode that it is below the frost line. This is done so that the resistance to the ground will not be greatly influenced by the freezing of the surrounding soil.

Generally by doubling the length of the ground electrode you can reduce the resistance level by an additional 40%. There are occasions where it is physically impossible to drive ground rods deeper in areas that are composed of rock, granite, etc. In these instances, alternative methods such as grounding cement are viable.

Diameter of the ground electrode

Increasing the diameter of the ground electrode has very little effect in lowering the resistance. For example, you could double the diameter of a ground electrode and your resistance would only decrease by 10 %.

Number of ground electrodes

Another way to lower ground resistance is to use multiple ground electrodes. In this design, more than one electrode is driven into the ground and connected in parallel to lower the resistance. For additional electrodes to be effective, the spacing of additional rods needs to be at least equal to the depth of the driven rod. Without proper spacing of the ground electrodes, their spheres of influence will intersect and the resistance will not be lowered.

To assist you in installing a ground rod that will meet your specific resistance requirements, you can use a table of ground resistances. Remember, this is to be used as a rule of thumb only because the soil is in layers and is rarely homogenous. The resistance values will vary greatly.

Ground system design

Simple grounding systems consist of a single ground electrode driven into the ground. The use of a single ground electrode is the most common form of grounding and can be found outside your home or place of business. Complex grounding systems consist of multiple ground rods; connected, mesh or grid networks; ground plates; and ground loops. These systems are typically installed at power generating substations, central offices, and cell tower sites. Complex networks dramatically increase the amount of contact with the surrounding earth and lower ground resistance.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Waste To Energy thermal technologies
DirectLogic Automation Electrical Power & Protection
The vast quantities of waste produced around the world are a large and growing problem. Waste to Energy technology based on pyrolysis is a solution.

Read more...
New enhanced Breaker Status and Communication Module
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Breaker Status and Communication Module (BSCM) Modbus SL/ULP, which delivers enhanced performance, improved connectivity and simplified integration for power distribution systems.

Read more...
Building green industries to scale green economies
Electrical Power & Protection
Africa is taking bold steps to build green industries across the continent. Namibia is a trailblazer in the hydrogen space, with up to five Final Investment Decisions scheduled to be made in 2025/2026 and is pioneering a world first for green industrialisation.

Read more...
Easing the path for IPPs navigating South Africa’s energy regulations
Electrical Power & Protection
Independent Power Producers and developers venturing into South Africa’s renewable energy sector face a challenging regulatory landscape. SPS is a renewable energy asset management company that is actively expanding into the energy trading and wheeling market, which will enable businesses to buy and sell energy directly

Read more...
How energy storage will make or break SA’s renewable transition
Electrical Power & Protection
Energy storage is no longer an add-on, but the foundation of a reliable, resilient and renewable energy system. As South Africa accelerates towards a greener future, storage innovation could determine the difference between progress and paralysis.

Read more...
Condition-based maintenance can revolutionise business continuity
Schneider Electric South Africa Electrical Power & Protection
As businesses experience growing pressure to enhance operational efficiency and reduce downtime due to electrical failure, condition-based maintenance becomes essential for preventing unforeseen equipment breakdowns by assessing the real-time health of electrical systems.

Read more...
Boiler selection for optimal thermal energy performance
Electrical Power & Protection
The changing world of boilers means companies wishing to improve their thermal energy efficiencies while containing costs and environmental impacts must make careful and informed decisions. AES’s rich pool of experience, ability to keep pace with new steam trends and technologies, and understanding of their clients’ production processes can assist clients to weigh up different options in a careful and informed manner.

Read more...
Securing Africa’s energy future starts at home
ACTOM Electrical Machines Electrical Power & Protection
Africa’s energy demands are surging, but the current reliance on imported solar technology leaves the continent vulnerable. This is why the prospect of building inverters and lithium batteries locally, designed for South Africa’s specific needs, is so promising.

Read more...
Dry-type transformers for Dutch intake substation
Electrical Power & Protection
A data centre in the Netherlands is the site of a recent innovation on the transformer landscape, where TMC Transformers has designed, manufactured and installed dry-type transformers in a large intake substation.

Read more...
Generators: The muscle in the new energy mix
WEG Africa Electrical Power & Protection
Contrary to their reputation as noisy and dirty, generators are a key part of modern energy supplies. Generators are reliable electricity workhorses in times of need. But they are also becoming welcome additions to modern energy mixes through efficiency improvements, noise reduction and flexible design choices.

Read more...