Editor's Choice


The route to proactive maintenance

August 2022 Editor's Choice Maintenance, Test & Measurement, Calibration

Some of the jobs being performed by today’s technicians don’t even have names or descriptions yet, and are being added ‘on the fly’ to keep up with today’s innovative tools and advanced equipment condition-monitoring techniques. What were once complex tasks, performed only by reliability engineers or specialised contractors, can now be accomplished by less experienced technicians with easy-to-use tools such as vibration screeners and thermal imagers.

Consequently, this allows analysts and reliability engineers to use their time and expertise more efficiently by examining equipment condition data and making proactive decisions to prevent equipment failure, ultimately saving money.

Case in point: Train the technician to use high-tech

Recently, a large, globally frecognised automobile manufacturer successfully deployed maintenance technicians, who normally repair equipment, to also carry out route-based condition monitoring using handheld vibration meters and thermal imagers.

Like many plants, the manufacturer had started to incorporate new technology into its operations, however, much of the machinery was still not equipped with sensors and therefore little or no equipment condition data was being gathered. Also, no regular condition monitoring routes or schedules had been set up.

Both the company’s thermographer and reliability team supervisor understood the value of equipment condition monitoring concerning proactive maintenance to extend equipment life. They decided to put vibration screening meters and infrared thermal imaging tools and technicians to the test.

“Our main reason for testing these tools was to see if we could pass along some of the vibration testing and thermography scans to maintenance technicians, so the reliability team could concentrate on the most difficult issues,” explained the company’s reliability supervisor. “Right now, we’re only able to look at certain pieces of equipment because we only have so much manpower. If maintenance could collect data on more equipment, and the experts could spend their time analysing the data, we could look at everything more frequently. Whatever tools we use have to make it easy for the maintenance techs to upload the data, because we want them to be more efficient.”

In the end, the pilot programme proved that techs could be deployed to assist the reliability team. It also provided technicians with a nice change of pace from some of their usual tasks.

Pairing route-based vibration screening with an asset criticality list

With the techs now trained and armed with thermal imaging and vibration screening tools, a natural next step for any manufacturer would be to transition to regular route-based equipment condition monitoring, such as vibration screening.

Obviously, not all equipment is created equal, nor is the failure of a particular machine component, so it makes sense to give more attention to machinery that, should it fail, will have the highest impact on overall production. Many times, the most common culprit for equipment failure is caused by misalignment, looseness, imbalance, bearing wear and motor electrical issues. By implementing route-based vibration screenings and by prioritising the right schedule based on an asset criticality list, much of the damage that common machine faults can cause can be avoided before they happen.

Prioritise the list

It is imperative to prioritise assets and rank them in order of importance before making schedules, assigning work orders and creating routes. Also, ensure success by selecting a qualified assessment team familiar with the various pieces of equipment; then, together the team can use the quality criteria to gain consensus about why a piece of equipment was included, and how it was ranked.

Rank the assets

Once the assets to be included on the list (by type, size, location, etc.) have been decided on, create a numbering system such as a scale of 1 to 5, to rank each asset from ‘most critical’ to ‘least critical’ based on its importance to overall production and processes. Lastly, add the numbers up to arrive at a criticality ranking for each piece of equipment.

Develop a screening schedule

Now that the asset criticality analysis list is complete, the next step is to establish a preventive maintenance task for each data collection point on the route for accurately screening machine condition changes.

Once the maintenance plan has been established and a fixed route of data collection points is in place, start laying out vibration screening schedules and testing frequencies, such as daily, monthly, bi-monthly, quarterly or yearly, depending on the asset criticality ranking and associated risk factors important to the industry, company and plant.

Additionally, identify the appropriate technician or engineer (less experienced, semi experienced, highly experienced) to address the task, depending on the asset ranking, the difficulty of the task and the expertise/training needed. For example:

Screening

Schedule junior technicians using electrical, thermal and vibration screening tools to monitor:

• Star machines – daily.

• Critical and semi-critical machines – monthly.

• Non-critical machines – quarterly.

Diagnosis

Schedule mid-level technicians using vibration testers to measure and diagnose faults on:

• Star machines – weekly.

• Critical machines – quarterly.

• Other machines – as needed.

Alignment

Schedule mid-level technicians to perform alignment checks and corrections on:

• Star machines – monthly.

• Critical machines – yearly.

• Other machines – as needed.

Analysis

Schedule senior technicians/engineers or contractors to perform advanced analysis and resonance testing on:

• Star machines – quarterly.

• Critical machines – annually and as needed.

• Semi-critical machines – as needed.

Keep in mind that, although the asset criticality analysis list serves as a strong guide, it also needs to be flexible enough that unique considerations or decisions can be made as needed.

Making proactive, planned stops along the road to reliability

Making the switch to a more proactive maintenance approach takes time. Transitioning, or adding to a technician’s skill set early in the process and introducing things like smarter tools, will help combat the growing need for a more technologically advanced workforce and will make each consecutive addition to the programme that much easier. Additionally, by adding condition monitoring based on an asset criticality list, companies can improve both personnel and plant efficiency and take quality, proactive actions based on data, to prevent equipment failures before they happen.

Remember that reliability is a journey and not a destination. Never stop documenting successes or else a new directive will cancel the great accomplishments that have been seen with the reliability programme.

What’s the next step?

One consideration might be the addition of a cloud-based computer maintenance management system (CMMS), such as eMaint, which allows access to data from Fluke Connect-enabled handheld tools using a desktop computer, smartphone or tablet. In conjunction with tools such as thermal imagers and vibration screening tools, a CMMS easily connects workers like technicians and reliability engineers to critical historical and real-time data – anytime, anywhere.

Fluke 805FC now optimised for route-based maintenance

Fluke’s two guiding values are that customers’ opinions, needs and wants are closely listened to, and as a consequence, Fluke meters are continuously improved. The Fluke 805FC vibration meter now greatly improves the ease of performing vibration screen routes for technicians and managers, enabling better management and monitoring of workflow. Improved features include:

• Build equipment setups and maintenance routes using Fluke Connect.

• Easily push work orders and routes to the technician’s smartphone via Fluke Connect.

• Add work orders directly to the unit using the Fluke Connect mobile app.

• Easily upload results after measurements are made.

• Share and view results remotely, receive alerts when equipment health changes, and view active trends of multiple parameters.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Industrial acoustic imaging tool
Comtest Pneumatics & Hydraulics
Comtest offers the Fluke ii Industrial Acoustic Imager series, a hand-held, easy-to-use tool that visualises sounds coming from small leaks in compressed air, gas and vacuum systems.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
PC-based control for fertiliser
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
On a farm in the USA, valuable ammonia is extracted from slurry and processed into ammonium sulphate. NSI Byosis has transformed this complex process into a flexible modular system. This modular approach requires an automation solution with flexible scalability in both hardware and software, which this Dutch company has found in PC-based control from Beckhoff.

Read more...
Loop signature 28: Things to consider when tuning.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
I was giving a course at a remote mine in the middle of the Namibian desert. We were discussing tuning responses, and as I always do on my courses, I mentioned that in my opinion ¼ amplitude damped tuning is not desirable, and is in fact not good.

Read more...
Control without complexity
Editor's Choice Motion Control & Drives
In an era where precision, performance and smart control define industrial success, the right driver can make all the difference. At Axiom Hydraulics, we’ve seen firsthand how the Sun Hydraulics XMD series transforms hydraulic systems, from mining and construction to agriculture and automation.

Read more...
Wireless test tools
Comtest Electrical Power & Protection
Fluke has on offer the Fluke 376 FC True-RMS Clamp Meter with iFlex, the most advanced troubleshooting tool for industrial and commercial electricians

Read more...
Automated test and measurement
Comtest Maintenance, Test & Measurement, Calibration
Comtest, in partnership with global brands, provides customised solutions with integrated hardware and software for efficient testing and data collection.

Read more...