Editor's Choice


Loop Signatures 13: Digital controllers – Part 5: The D term

July 2022 Editor's Choice System Integration & Control Systems Design

I would be remiss not to mention at the outset that the next three articles on the D term in digital controllers were previously published some years ago in this magazine. However, I feel strongly that this part of the Loop Signatures article series covering digital controllers would hardly be complete if these were left out, so I ask in advance for your forbearance if you have read them previously.

The derivative, or D term, is hardly ever used in feedback control loops, and most people have very little practical understanding of the subject. Opinions on its use vary from one extreme to the other. A professor of control at a leading South African teaching establishment once told me that he had proved conclusively that the derivative was not only of no help, but that it actually slowed down control response. At the other end of the spectrum, a grizzled senior control technician in a large paper mill, with many years of experience, stated that he insisted that his people tuned the derivative into virtually every loop in the plant, as he was convinced that it not only speeded up response, but it was also a major contributor to loop stability.

Both of these views could be said to be partially correct in some respects, but do not reflect the whole truth. In actual practice, the derivative is generally employed in less than one in several hundreds of control loops. Reasons for this will be given in this and the next two Loop Signatures articles.

The objective of the derivative term is to speed up the control response in very slow processes, as often encountered in some temperature controls. A good example of where the derivative could be used was found by this author in a plant in Secunda, where a practical control course was being held. The class had

just finished tuning a very slow temperature loop and were trying the calculated settings using only P and I control. Upon making a 10% setpoint change, the valve opened up to about 30% under the proportional action and the temperature started rising very slowly. The integral action then also started ramping the output up and the temperature eventually got to setpoint about 45 minutes later.

The operator watching this laughed and mentioned that he could do the same thing in manual, but much faster. To demonstrate this, and after the temperature had been reset to its original value, he placed the loop in automatic and immediately opened the valve fully to 100%. The temperature then started rising much faster than it had done the previous time. Based on his experience and judgement, when it had risen a certain amount but was still some way from the setpoint, he started closing down the valve to prevent the temperature from overshooting. Eventually he got the temperature to the new setpoint about 40% faster than it had in the previous automatic PI control. The same result would have occurred in automatic if the derivative term had been used correctly.

Our experience has been that the derivative term can in fact improve the control response time on two types of process dynamics. The first is a slow self-regulating process with multiple single-order lags in series. This is typified by an ‘S-shaped’ response to a manual step change in controller output. This response often gives the impression of long deadtime (Figure 1 shows such a response for a process with a total of five first-order lags in series, each with a 5 second time constant, and zero deadtime). The I term cancels out part of the lags and the D term can also cancel out a further lag, which allows better straightening of the closed-loop Bode gain plot at the high-frequency end.

It should be noted that the D term is ineffective on self-regulating processes with only a single lag, irrespective of the size of the lag. The I term cancels the poles effectively on its own, and D will actually not help the response at all.

The second type of process where the D term is particularly effective is on an integrating process with a large lag. These process types are typified in batch reactor temperature control. A schematic of a simple batch reactor control scheme is shown in Figure 2. The response of such a process to a manual step change in controller output is shown in Figure 3. Note how the process variable curves slowly into the ramp.

In automatic, the D term will cancel out the lag and the process will respond to changes much faster, so it works really well in these applications. In a pharmaceutical factory in the UK, one plant consisted of only batch reactors. Previously, all the temperature control had been performed by using P only. By adding the D term, the reaction times were so much faster that production through the plant was eventually increased by a staggering 17%!

The reason that the I term is not used in this particular type of process is because a setpoint change on an integrating process that employs the I term in the controller will always result in an overshoot. If there is no cooling on a batch reactor, overshoot is not acceptable as there is no way to reduce the temperature back to setpoint in a reasonable time after an overshoot.

How is the D term applied in a controller? Figure 4 shows the principle. The derivative is used in calculus to measure the slope of a line. On a continuous system as seen in control applications, the error signal – or sometimes the process variable (PV) signal, as will be discussed in the next article in this series – is fed into a derivative calculation block.

The output represents the rate of change of the input signal. The derivative of a constant input signal is zero, while the derivative of a ramp input is a step – the steeper the ramp, the bigger the output step. The derivative of a vertical change in input, however big or small, gives a theoretical output of infinity. This is one of the main reasons why D is so seldom used: most process variable signals are noisy, so small, fast-changing variations of PV cause the output of the controller to jump about too much.

The D term is employed to try and move the output faster if the error signal changes quickly. Some people call it ‘anticipatory’ control. Nathaniel B. Nichols, co-developer of the famous Ziegler-Nichols method, coined the phrase ‘preact control’.

Figure 5 is a schematic of a simple controller configured with a ‘parallel’ PI algorithm. For simplicity, no I action is included. Therefore, a manual bias is provided to allow ‘manual reset’ which lets one manually eliminate offset between PV and setpoint. A ramp change of setpoint is shown in Figure 5.

The resultant error signal, and the proportional action, also ramp, and the output of the D unit is a step. The final output of the controller is then a step followed by a ramp. This response is enlarged in Figure 6 and compared with a P-only response. It can be clearly seen that the controller output reacts to a step change in error ‘T’ seconds faster with P+D control as opposed to P-only control.

In the next Loop Signatures article, the application and use of the derivative in modern digital controllers will be discussed.


About Michael Brown


Michael Brown.

Michael Brown is a specialist in control loop optimisation, with many years of experience in process control instrumentation. His main activities are consulting and teaching practical control loop analysis and optimisation. He now presents courses and performs optimisation over the internet. His work has taken him to plants all over South Africa and also to other countries. He can be contacted at: Michael Brown Control Engineering CC, +27 82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature 22: How cyclical disturbances affect a control loop
Michael Brown Control Engineering Editor's Choice
When tuning noisy loops, we recommend in our courses that one should eliminate the noise by editing it out, so the tuning will be done only on the true process response, free of any noise. The controller is controlling the process, and is not controlling the noise.

Read more...
High-performance motion control for teabag packaging machine
Beckhoff Automation Editor's Choice
Teepak relies on PC-based control and drive technology from Beckhoff to set new benchmarks for speed and precision in its teabag packaging machines.

Read more...
VEGA takes the pressure out of water pressure measurement
VEGA Controls SA Editor's Choice
Water treatment systems in metropolitan areas require careful monitoring and management processes across widespread networks. However, process plants choosing VEGA for their process automation know that the company offers more than just precise and reliable pressure sensors and instrumentation.

Read more...
Advantages of wireless storage tank and container tank level monitoring
Turck Banner Southern Africa Editor's Choice
Implementing a tank monitoring system that utilises ultrasonic or radar sensors in a wireless network has many advantages.

Read more...
Case History 191: The weakest link.
Michael Brown Control Engineering Valves, Actuators & Pump Control
Which is the weakest link in a control loop? The answer, without any doubt is that, in most cases, the final control element is the weakest link.

Read more...
Bringing Industry 4.0 to a castings foundry for heavy industries
Editor's Choice
Moving to Industry 4.0 takes time and determination, especially for an established company in a heavy industry. Castings foundry, POK in Mexico has moved toward Industry 4.0 in a series of steps over several years, changing from manual to automated systems for more available, immediate and reliable data.

Read more...
SMOM – the future is here now
Iritron Editor's Choice IT in Manufacturing
In his presentation at the recent MESA Africa conference, Neels van der Walt, business development manager at Iritron, revealed the all-encompassing concept of smart mining operations management (SMOM), and why it is inextricably linked to the future of worldwide mining operations.

Read more...
Navigating disruption in manufacturing
Editor's Choice IT in Manufacturing
When considering IT in manufacturing, the underlying assumption is twofold: first, a wave of valuable maturing technologies can be harnessed to create new business value, and second, the environment in which these technologies will be applied will be relatively predictable, with change following a manageable, evolutionary path. However, recent disruptions have shattered these assumptions.

Read more...
The fascination of movement
Editor's Choice Motion Control & Drives
A motor from Faulhaber provides gentle motion for the finest watches in the world.

Read more...
Complete system for transparent energy monitoring
Beckhoff Automation Editor's Choice Electrical Power & Protection
Transparent energy monitoring reduces both machine downtime and the necessity to oversize the corresponding components. Added to these advantages are simplified preventive maintenance, and increased production efficiency. The wide range of PC-based control technology from Beckhoff offers a solution that can be optimally adapted to individual applications.

Read more...