IT in Manufacturing


Recovering from industrial data disasters

June 2022 IT in Manufacturing

It can quickly become your worst nightmare. The plant’s systems are down, and the backups don’t work. Production has stopped. Everyone is looking to you to sort it out quickly.

As manufacturers increase their use of digital technologies, so the amount of data grows. This comes with increased risk, which is further exacerbated by the variety and complexity of new interconnected systems.

The way manufacturers manage risk is by assessing the probability of failure together with the consequences. The risk of automation system failure and the associated data loss is high because of the severe consequences. Aside from bringing production to a sudden halt, there are often safety and environmental implications when shutting down a plant. Risk mitigation must reduce both the likelihood of failure and the consequences.

Risks arise from expected and unforeseeable sources

There are many possible causes of system failure, not all of which can be prevented. Failure might arise from human error, malicious activity, natural disasters or equipment faults. Often there is a single point of failure. These common-mode failures might include a shared power supply or utility, security services, reliance on a third party, rolling out incompatible operating system patches, and many more.

While we usually consider significant disasters such as floods, it is more common that system failures will arise from less obvious causes. A severed cable or a water leak onto a vital computer circuit can go undetected for days. What about malicious damage or sabotage? When formulating a disaster recovery plan, it is helpful to remember that you will not be able to identify and prevent every possible cause of failure.

Because failure is inevitable at some stage, you must implement proper controls that serve to limit the consequences. Disaster recovery (DR) is an integral part of business continuity planning (BCP) as it ensures that proper mitigating controls are in place to protect the organisation from loss, corruption or compromised information.

Central to a well-formulated disaster recovery plan is making a determination of the system’s recovery point objectives (RPO) and the recovery time objectives (RTO). For example, you might decide that a specific PLC needs to be restored within two hours to a particular software version (which might not necessarily be the most recent update). Or you must regain your scada system within six hours to a point where you can retrieve data for the past 30 days. A laboratory management system might need to be up and running in four hours. And so on.

Backup and restore procedures

Backup and restore procedures will form an integral part of disaster recovery. Backup and restore systems may be on-premises in the same data centre, in an offsite location or even in the cloud. Each of these configurations will affect the time to recover your plant. There are also implications on the network infrastructure to guarantee data transfer rates during both ongoing operations and the recovery process.

When the cloud is used as a backup data store, it is vital to understand how your data is safeguarded. Service level agreements must cater for disaster recovery procedures that align with your recovery objectives. Not all cloud vendors and infrastructure providers are equal in this regard, so do your due diligence carefully.

A variety of PLC distributed control systems (DCS) and scada systems will be at the heart of the automation and control in any plant. The safe operation of the plant will rely on multiple interconnected systems, some of which might no longer be supported by the vendor. A failure in any subsystem that is not repaired quickly could lead to shutting down sections of the plant. It is also vital to back up every point of integration.

The risk of manufacturing system failure can be reduced by having some redundancy together with regular backups. In mission-critical process control applications, redundancy might involve installing a ‘hot standby’. Backups will then act as a second layer of defence. Remember that redundancy will introduce additional costs and can pose an added risk.

Reliable systems do not equate to clean backups

It is possible to gloss over and confuse the techniques for improving reliability with a backup. For example, having hot-swappable hard drives in a redundant array with self-diagnostic capability will enhance reliability and might ‘tick the box’ in your mind. But this system of reliable hard drives is not enough if the data itself becomes corrupted, whether through failure elsewhere in the system or malicious activity. A second data centre on-site with a hot standby is also of little use if the data corruption has been replicated. You need to be able to restore backward in time to a specific point where you know the data was not compromised.

The DRP itself could fail. This is quite possible because it is hard to test a complete backup/restore without creating some form of disruption. Production pressures can limit the window for shutdowns needed to test such systems thoroughly. A full backup/restore test should also involve the vendors who are responsible for subsystems. Often, subsystems are tested independently and you simply accept the risk of not testing the integrated whole. It is important that you also understand the risk of an incomplete DR test and how you will mitigate it.

Cost-cutting might, in the past, have resulted in your company cancelling service agreements with OEM vendors and taking over the responsibility of specialised or proprietary disaster recovery in-house. But with that responsibility comes the need to ensure the right skills are available at short notice during a system failure. Over time these specialised skills tend to dissipate, leaving the organisation vulnerable.

The importance of a regular risk review and continuous auditing of the effectiveness of your control measures cannot be overstated. Just because something has never happened does not mean it never will. Complacency is a real risk and needs to be constantly challenged – test, test and re-test your disaster recovery plan.

IT security professionals advocate a zero-trust approach whereby you make no assumptions about the trustworthiness of any factor outside your direct control. A similar uncompromising and critical approach is essential to also ensure the continuity of industrial systems.


About Gavin Halse


Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.

For more information contact Gavin Halse, Absolute Perspectives, +27 83 274 7180, [email protected], www.absoluteperspectives.com




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved