IT in Manufacturing


Predictive analytics for artificial lifts

October 2020 IT in Manufacturing

Machine learning and artificial intelligence applications in artificial lift systems have seen a growth in importance recently and are no longer a nice to have, but essential tools for design, optimisation and failure prediction. Real-time optimisation techniques that help to optimise the production, however, do not necessarily holistically consider the equipment reliability and best operating range.

Whenever a failure occurs, the reasons could be attributed to more than one condition and hence, Root Cause Analysis is often a complicated process involving visual inspection and laboratory analysis to confirm the reason for the failure. The best operating envelopes for the lift system are also at the discretion of the optimisation engineer, who may not visit often enough to account for changing operating conditions. This may lead to the system operating in a conservative fashion leading to reduced production. As an example, a rod pump might operate at a lower speed anticipating high rod stresses based on historical operation. In some instances, the systems might not be designed for the desired operating environment and may pose a threat to its reliability. There is a need for a technology which would serve as a guide to overcome these challenges using real-time diagnosis and provide foresight into future operations and potential problems that may increase operator costs.

Emerson’s predictive analysis for artificial lift using the Knowledge Net (KNet) Machine Learning Platform is an engineered solution for predicting failures or abnormal working conditions before their onset. The solution utilises historical data from the wells to build a solid offline well model, which then gets trained on the real-time data as the well comes on to production. As the lift systems are subject to many complex events that might lead to a potential failure, the principal component analysis helps in the elimination process. With a comprehensive Failure Mode Effect Analysis and Root Cause Analysis library, the solution captures, in real-time, the abnormality and translates it into a potential run time deviation. With a prior indication, the condition can be corrected or interventions planned more efficiently. The dynamic modelling of key performance indicators based on system intelligence help in driving asset performance to identify the priorities relevant to the existing conditions. This widens the scope from mere well performance to complete asset performance enhancement.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Unlocking mining efficiency with advanced processing control
IT in Manufacturing
ABB’s Advanced Process Control system, powered by its Expert Optimizer platform, is emerging as a key enabler of smarter, more efficient mining operations.

Read more...
Open control technology reduces energy consumption and carbon footprint.
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
Harnessing AI and satellite imagery to estimate water levels in dams
IT in Manufacturing
Farmers and water managers often struggle to accurately estimate and monitor the available water in dams. To address the challenge, International Water Management Institute researchers have worked with Digital Earth Africa to create an innovation that uses satellite images and AI to get timely and accurate dam volume measurements.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Track busway for scalable data centre power delivery
IT in Manufacturing
The latest generation Legrand Data Centre Track Busway technology addresses the operational pressures facing today’s high-density, AI-intensive computing environments and is being well received by data centre facilities around the world.

Read more...
Poor heat management in data centre design
IT in Manufacturing
Designing a world-class data centre goes beyond simply keeping servers on during load shedding; it is about ensuring they run efficiently, reliably, and within the precise environmental conditions they were built and designed for.

Read more...
It’s time to fight AI with AI in the battle for cyber resilience
IT in Manufacturing
Cybercrime is evolving rapidly, and the nature of cyber threats has shifted dramatically. Attacks are now increasingly powered by AI, accelerating their speed, scale and sophistication. Cybersecurity needs to become part of business-critical strategy, powered by AI to match attackers’ speed with smarter, faster and more adaptive defences.

Read more...
Why AI sustainability must be a boardroom priority
IT in Manufacturing
As South African companies race to harness artificial intelligence for innovation and growth, few are asking the most critical question - the environmental cost.

Read more...
RS South Africa shines spotlight on MRO procurement
RS South Africa IT in Manufacturing
RS South Africa has highlighted the growing pressures faced by procurement professionals responsible for maintenance, repair and operations supplies across the country’s vital economic sectors.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved