Editor's Choice


Nick Denbow’s European report: Trends in plant monitoring

March 2019 Editor's Choice

Early last year, the interest from many large automation and sensor suppliers focused on condition monitoring, for example, using wireless communications to monitor the condition of the motors and bearings on rotating equipment. This trend continues, and several relevant stories are featured in the magazine this month.

What I found of interest was that Yokogawa took a slightly different approach to condition monitoring and started a form of collaboration with two established sensor suppliers who also used the ISA100 standard for the wireless system – where Yokogawa was the leader in the associated control systems. One collaborator was Bently Nevada, which provided vibration monitoring systems for bearings, and the other, Spirax Sarco, which developed its own sensors for monitoring steam traps. In parallel to this activity, in its research laboratories, Yokogawa was working away on two other development routes, to establish a coordinated approach to IIoT condition monitoring for multiple sensor systems.

Sushi sensors

The first research area for Yokogawa was to develop the ‘Sushi’ sensor. Very appropriate for the Japanese company, one might think! But this sensor development started as far back as 2007, when the possibilities for industrial wireless sensors were just developing: the press was first told of the research project in 2016. The models shown then had the appearance of large bugs, in various colours – blue, yellow and silver – mainly the Yokogawa colours. But these were empty models, purely built to illustrate their concept. The Sushi sensor design idea is for a small, sealed, relatively low cost IIoT sensor, to be suitable for use in even harsh plant locations, in large numbers. Each is to have its own aerial built-in, and provide data via a wireless link. The first actual production versions of these units were launched in Japan and have been in use since last March, measuring temperature and vibration. Now the Sushi sensors are to be launched in Europe in March, and will be rolled out in other areas through the year.

The Sushi sensor is equipped with batteries for life, and is a very low power device: so the wireless link used is LoRaWAN (from the LoRa Alliance), a low-power wide-area (LPWA) wireless data communications protocol. These link to a plant server, or to the cloud, via a LoRaWAN gateway. In addition, the sensors support near-field radio communication (NFC), which allows sensor programming and local sensor condition monitoring – from a smartphone, via a dedicated App.

Yokogawa sees the major potential applications for Sushi sensors to be in measuring the vibration and temperature of plant equipment, such as compressors, pumps, motors, fans, and conveyors, much the same as the major condition monitoring markets for conventional vibration sensors. The Sushi sensors will form part of the OpreX industrial automation offering, and will use Yokogawa applications developed for data analysis using the IIoT.

Pump applications

The second research route at Yokogawa has been in collaboration with a Japanese pump manufacturer, active over the last few years. From this, their engineers have developed a new concept for pump wear monitoring, which will also be used for the emerging IIoT analysis architecture. The collaboration was with the Iwaki Co, which manufactures magnetic drive pumps widely used on various types of aggressive liquids in chemical, pharmaceutical and food plants.

Now being launched is a ‘Remote Pump Monitoring Service’ for initial trial by interested users, to prove the efficiency of the concept. With this service, operating data such as the current being drawn by a pump, pump discharge pressure and flow rate, temperature of the conveyed liquid, and tank empty/not empty status will be collected via an Iwaki pump protector and transferred to the cloud, using the new Yokogawa IIoT infrastructure.

Also launched this year, Yokogawa has developed a pump cavitation detection system, which will provide early warning of plant conditions that are liable to damage the pump, and cause increased noise and vibration. Using the DPharp EJX110A differential pressure transmitter, monitoring the pump at 100 msec intervals, Foundation Fieldbus communications transmits the data for analysis to the Yokogawa cavitation detection software loaded into a Stardom controller.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Loop signature 22: How cyclical disturbances affect a control loop
Michael Brown Control Engineering Editor's Choice
When tuning noisy loops, we recommend in our courses that one should eliminate the noise by editing it out, so the tuning will be done only on the true process response, free of any noise. The controller is controlling the process, and is not controlling the noise.

Read more...
High-performance motion control for teabag packaging machine
Beckhoff Automation Editor's Choice
Teepak relies on PC-based control and drive technology from Beckhoff to set new benchmarks for speed and precision in its teabag packaging machines.

Read more...
VEGA takes the pressure out of water pressure measurement
VEGA Controls SA Editor's Choice
Water treatment systems in metropolitan areas require careful monitoring and management processes across widespread networks. However, process plants choosing VEGA for their process automation know that the company offers more than just precise and reliable pressure sensors and instrumentation.

Read more...
Advantages of wireless storage tank and container tank level monitoring
Turck Banner Southern Africa Editor's Choice
Implementing a tank monitoring system that utilises ultrasonic or radar sensors in a wireless network has many advantages.

Read more...
Bringing Industry 4.0 to a castings foundry for heavy industries
Editor's Choice
Moving to Industry 4.0 takes time and determination, especially for an established company in a heavy industry. Castings foundry, POK in Mexico has moved toward Industry 4.0 in a series of steps over several years, changing from manual to automated systems for more available, immediate and reliable data.

Read more...
SMOM – the future is here now
Iritron Editor's Choice IT in Manufacturing
In his presentation at the recent MESA Africa conference, Neels van der Walt, business development manager at Iritron, revealed the all-encompassing concept of smart mining operations management (SMOM), and why it is inextricably linked to the future of worldwide mining operations.

Read more...
Navigating disruption in manufacturing
Editor's Choice IT in Manufacturing
When considering IT in manufacturing, the underlying assumption is twofold: first, a wave of valuable maturing technologies can be harnessed to create new business value, and second, the environment in which these technologies will be applied will be relatively predictable, with change following a manageable, evolutionary path. However, recent disruptions have shattered these assumptions.

Read more...
The fascination of movement
Editor's Choice Motion Control & Drives
A motor from Faulhaber provides gentle motion for the finest watches in the world.

Read more...
Complete system for transparent energy monitoring
Beckhoff Automation Editor's Choice Electrical Power & Protection
Transparent energy monitoring reduces both machine downtime and the necessity to oversize the corresponding components. Added to these advantages are simplified preventive maintenance, and increased production efficiency. The wide range of PC-based control technology from Beckhoff offers a solution that can be optimally adapted to individual applications.

Read more...
Iritron’s year of consolidation
Iritron Editor's Choice System Integration & Control Systems Design
Despite the multiple challenges faced by businesses in South Africa, the buoyancy of the technology sector worldwide has produced some green shoots for automation specialist, Iritron.

Read more...