Analytical Instrumentation & Environmental Monitoring


More from less in solvent extraction processes

February 2018 Analytical Instrumentation & Environmental Monitoring

Copper has been used by humans from as early as 8000 BC. It was the first metal to be smelted from its ore 5000 BC, the first to be cast into a shape 4000 BC, and the first to be purposefully alloyed with another metal, tin, to create bronze in 3500 BC.

In the middle ages, the oxidised layer of copper was naturally leached by water, depleting the upper layers of oxidised ore and revealing the rich copper laden solutions. This prompted miners to dig deeper, heap the ore and leach it out. This is known as hydrometallurgical production, the extracted solvents can be electro-won, and almost pure copper anodes produced.

The pyrometallurgical method uses pulverisation, flotation, smelting and converting to produce anodes. The copper that is produced by precipitation in the leaching process can be added to the smelting process for further processing to anodes. During this cementation (iron precipitation) copper is produced by running the pregnant leach solution through a pile of scrap iron or steel. An electromechanical process takes place and the copper precipitates onto the iron/steel, which in turn dissolves into the solution. It detaches as flakes or powder.

The pregnant leachate that is produced from the process, will contain the leaching agent, either water or H2SO4 for oxide ores. Acid cure and acid-ferric cure are used for mixed ores. Some plants use an acid/kerosene mix. The process has to remove and recover the copper from the leachate, and remove impurities. This process has to be controlled, and as we know, when we measure, we can control.

Ores that have been mined, crushed and dumped on impervious pads, are usually sprinkled or sprayed with the leaching solution, in the heap leaching process. Flooding or trickle systems can be used for dump leaching. The pregnant liquor is then fed to a solvent extraction plant, which can be optimised by various methods.

Maximum extraction with minimum wastage

Endress+Hauser suggests that by measuring the pH, conductivity and interface levels, the process can be managed and optimised for maximum extraction, and minimum wastage.

Most important in the solvent extraction is detection and monitoring of the depth of the organic phase. The copper is trapped in the top layer. Automation is the norm in modern plants, since this does away with manual dipping, and the subsequent errors that it can produce. To this end, with the aid of Sensorfusion, Endress+Hauser has taken the reliability and accuracy of its guided wave radar and capacitance level, and combined them into one device, which will simultaneously provide a reliable and accurate measurement of the top and interface levels, even in emulsion layers.

To assure the correct metal extraction, plants need to measure the conductivity of the settling chamber. This measurement will ensure that it has control of the transition stage from organic to aqueous. If not correctly controlled, this may cause ‘mud’, and as a result plant downtime and wastage of additives. The Indumax CLS50D sensor and a CM44x is used for this measurement. The CLS50D is an inductive conductivity sensor that can withstand high temperatures and has high chemical resistance. It has the added advantage of having Memosense digital technology.

To control the addition of solution, and the returned aqueous raffinate, we need to know the pH values. For this we use the CPF81D PH sensor. It is a robust, low maintenance sensor with Memosense digital technology.

Uranium, gold, palladium and platinum are commodities that can go through a similar process, but with differences in the refining stages.

For more information contact Pieter Andjelkovic, Endress+Hauser, +27 (0)11 262 8000, [email protected], www.za.endress.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Anton Paar launches inline refractometers for precision Brix monitoring
Anton Paar Analytical Instrumentation & Environmental Monitoring
[Sponsored] Anton Paar has introduced innovative inline refractometers that are designed for continuous Brix concentration monitoring in metalworking machines, fruit and vegetable processing and other industrial processes.

Read more...
Supporting fast, safe helicopter service across Sweden
ATEQ South Africa Analytical Instrumentation & Environmental Monitoring
In an environment with high risks and fierce competition, Storm Heliworks’ fleet of eight helicopters operates on assignments throughout Scandinavia. Maintenance is critical, and the company recently invested in a battery charger analyser from ATEQ Aviation.

Read more...
Keeping a close eye on product quality and purity
Endress+Hauser South Africa Sensors & Transducers
Colour measurements are necessary in many processes to avoid product losses and ensure safe production and batching. The Memosens Wave CKI50 process spectrometer from Endress+Hauser is a compact, robust and process-friendly device allowing quality, batching and phase checks to be performed by a single instrument for the entire visible colour spectrum.

Read more...
Where simplicity meets reliability
Endress+Hauser South Africa Temperature Measurement
The new iTEMP TMT31 temperature transmitter from Endress+Hauser combines simplified selection, ordering, installation and operation with the highest reliability and long-term stability in one product.

Read more...
WearCheck introduces advanced Legionella testing to safeguard water quality
Wearcheck Analytical Instrumentation & Environmental Monitoring
WearCheck Water has expanded its expertise in water analysis with the introduction of Legionella pneumophila detection and enumeration. This positions the company at the forefront of water and surface safety monitoring, ensuring businesses, industries, and public institutions can proactively manage legionella contamination risks.

Read more...
Silo weighing made easy - new mounting kit for load cells
Analytical Instrumentation & Environmental Monitoring
The PR 6003 mounting kit features fast commissioning in demanding applications in industrial silo weighing. It combines maximum accuracy with maximum safety in a compact system.

Read more...
Inline beverage analyser leverages advanced multi-parameter technology
Analytical Instrumentation & Environmental Monitoring
[Sponsored] The Cobrix 7501/7601 inline beverage analyser leverages advanced multi-parameter technology to enhance quality control in carbonated soft drink production.

Read more...
Smart weighing boosts Bayer’s automation
Analytical Instrumentation & Environmental Monitoring
he new supply centre of the agricultural chemical and pharmaceutical company Bayer in Hangzhou integrates weighing technology of Minebea Intec for precise mixing and homogenisation in Zone 2 hazardous areas.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
WearCheck Water wins accreditation for microbiological testing
Wearcheck Analytical Instrumentation & Environmental Monitoring
WearCheck Water’s Johannesburg laboratory was recently awarded ISO/IEC17025 accreditation for Total Coliforms and E.coli Testing after a rigorous audit process, adding to the company’s extensive list of certifications, and reinforcing the laboratory’s adherence to national and international work quality standards.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved