IT in Manufacturing


LabVIEW 2015 changes the game for the Internet of Things

Technews Industry Guide - Maintenance, Reliability & Asset Optimisation 2016 IT in Manufacturing

Since 1986, LabVIEW has been an industry-leading software development environment that helps engineers and scientists build test, measurement, and embedded systems to solve the world’s challenges. Through the power of graphical programming, LabVIEW users solve grand challenges, such as how to monitor the condition of power grids to keep the lights on, how to automate mobile device testing to keep our world connected, and how to build the factories of the future that will usher in the next great industrial revolution. Devices are being added to these systems at an alarming rate where Cisco estimates that by 2022, one trillion devices will be connected in the Internet of Things (IoT). As their number of devices increases, these systems grow not only in size but also in complexity and new challenges for system design. These intricate systems must be networked together to facilitate communication for intelligent decision making.

With expansive, complicated systems, we can’t waste time sending data up the chain for each component to wait for further instruction. Decisions need to be made on the node, but this cannot happen without increasing data analytics capabilities to create more intelligent devices. With this intelligence, individual components in a system can analyse and adapt to their surroundings to prevent failure or optimise efficiency and also communicate the adaptation to other affected devices in the system. For example, a robotic arm on a production line could change its control algorithm to compensate for a worn joint and then notify other robotic arms down the line of the oper­ation change and new wear pattern to identify.

Who wants useless data?

System designers have taken advantage of recent communication technology advances to connect devices that before were isolated from the rest of the world. The IoT relies on these advances to create systems in which devices can talk with each other. Our robotic arm cannot only share information with other robots, but also immediately notify offsite engineers of any production changes due to joint wear. Connectivity requirements make it necessary to implement wireless protocols, particularly in systems where just a few years ago, network compatibility was not considered at all.

As system complexity and communication evolves, the need for synchronisation among the devices becomes even more vital to system health. Complex systems will have tighter time constraints, potentially down to the milli­second, to prevent system failure. Synchronisation protocols need to be introduced into a greater number of connected systems to ensure timing requirements are met and data is communicated at the right time. Without a syn­chronisation mechanism in place, the data devices transmit to each other is useless.

LabVIEW 2015 provides a reliable, high-performance graphical system software solution to help make engineers and scientists who face these new challenges more productive.

Reliable solution for the IoT

The Central Advanced Research and Engineering Institute at the Hyundai Motor Group is using LabVIEW to design wearable robots to assist people who experience difficulty walking because of knee or hip impairments. While developing the robot, the research team encountered challenges that are becoming more common to system designers in the age of the IoT. The robot’s design requires many sensors to collect data from its surrounding environment. The data needs to be quickly processed to influence the performance of the actuators moving the system. By developing the application using LabVIEW, the team was able to use real-time data from the sensors to perform complex control algorithms to regulate multiple actuators. Using NI Data Dashboard, the team provided wearers with an interface to interact with and adjust the robot’s settings to their personal preferences. The research team at Hyundai needed to not only implement real-time data analytics and wireless capabilities for the robot, but also be efficient in their development.

“Using LabVIEW and the LabVIEW RIO architecture allowed us to reduce the time of developing and testing a new robot control algorithm to just one week, compared to one month with a text-based approach. We are able to prototype with software and hardware faster and adapt to rapidly changing control requirements quicker,” said DongJin Hyun of the Hyundai Motor Group.

LabVIEW played an integral role in helping this research team efficiently develop a ­wearable robot that takes advantage of the IoT.

New features in LabVIEW 2015

LabVIEW 2015 introduces key innovations to meet the challenges facing engineers who are creating, designing, and testing the IoT. Interested readers can visit www.ni.com/labview/whatsnew for an overview of the new features.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Transforming battery manufacturing processes
IT in Manufacturing
Siemens and Hirano Tecseed, a Japanese machine builder, are partnering to transform battery manufacturing processes.

Read more...
From Trojan takeovers to ransomware roulette
IT in Manufacturing
Cisco’s Cyber Threat Trends Report offers a comprehensive and overview of the evolving cybersecurity landscape, leveraging its vast global reach through the analysis of DNS traffic.

Read more...
The road to decarbonisation in mining
IT in Manufacturing
The mining industry is a key player in global carbon emissions, and ABB’s eMine is at the forefront of efforts to drive the sector’s decarbonisation.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Siemens’ PAVE360 to support new Arm Zena Compute Subsystems
IT in Manufacturing
Siemens Digital Industries Software is expanding its longstanding relationship with Arm and adding support for the newly launched Arm Zena Compute Subsystems in its PAVE360 software, designed for software-defined vehicles

Read more...
Empowering OEMs in industrial automation
Schneider Electric South Africa IT in Manufacturing
Organisations are increasingly focusing on empowering OEMs within the industrial automation sector

Read more...
Fortifying the state in a time of cyber siege
IT in Manufacturing
In an era where borders are no longer physical, South Africa is being drawn into a new kind of conflict, one fought not with tanks and missiles, but with lines of code and silent intrusions. The digital battlefield is here, and cyber space has become the next frontier of conflict.

Read more...
Levelling up workplace safety - how gamification is changing the rules of training
IT in Manufacturing
Despite the best intentions, traditional safety training often falls short, with curricula either being too generic, too passive, or ultimately unmemorable. Enter gamification, a shift in training that is redefining how businesses train for safety and live by those principles.

Read more...
Reinventing data centre design: critical changes to meet surging
Schneider Electric South Africa IT in Manufacturing
AI technologies are pushing the boundaries of what is possible which, in turn, is presenting data centres with a whole new set of challenges. Fortunately, several options are emerging which include optimising design and infrastructure for efficiency, cooling and management systems

Read more...
Watts next - can IT save the planet
IT in Manufacturing
The digital age’s insatiable demand for computing power has collided with an urgent and pressing need for sustainability. As data centres and AI workloads consume unprecedented energy, IT providers are pivotal in redefining how technology intersects with environmental stewardship.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved