Electrical Power & Protection


Designing an energy-efficient compressed air system

April 2011 Electrical Power & Protection

Steam and compressed air are often the most abused and expensive forms of power in a factory. Often compressor housing is designed with undersized piping and air treatment equipment which does not use electricity efficiently.

A pressure drop of 1 bar in an air system is equal to a wasted power cost of R23 777 per annum when a 185 kW air compressor is continuously operated at 28 m³/min (assuming R0,38/kWh). For an energy efficient compressed air system, design engineers might consider the following pointers:

* Before buying a new compressor plant, conduct a professional compressed air audit to determine the plant’s actual air consumption and prevent over or under sizing of the compressor and dryer plant.

* Log air leaks and implement an action plan to reduce them to an acceptable level.

* Select air compressors which satisfy the plant’s volume and quality needs. Variable speed drives may be considered.

* Select an energy efficient air dryer that provides for the dew point needs of the plant with minimal air pressure losses. Over specification will lead to increased long-term running costs. Decentralised air drying, with different types of dryers might be considered to reduce energy wastage.

* If dew points below -40°C are required, consider dew point controllers for dryers with capacities greater than 14 m³/min. Above 21 m³/min, heat regenerative dryers should be mandatory. These have lower purge air requirements and the ensuing power savings are enormous. Recovery time for the extra capital expenditure is often under one year, with continuous payback for the life of the dryer.

* Use power efficient OEM filter cartridges with a pleated construction. These normally have a lower initial Δp and will inflict a lower pressure loss while providing longer service intervals compared to a simple wound cartridge.

* To reduce air wastage when condensates are discharged, use efficient capacitance type intelligent condensate drains for dryers, filters and receivers.

* Design the compressor house with cognisance given to ventilation and efficient re-use of waste heat from the compressors. A 1°C rise in the inlet temperature to the compressor will decrease the compressor’s output capacity by 1%.

* Split the compressor house power supplies to minimise compressed air disruption in the event of a transformer failure.

* Design the compressor house air main piping to achieve an air pipeline speed of 3 m/sec. This will ensure that compressors do not offload prematurely due to pipe line pressure restrictions. It is common to find air compressors running in idle mode, and not able to deliver air to the plant due to undersized and restrictive compressor house piping.

* Design the ring main air distribution system to achieve an air speed of less than 6 m/sec and a maximum 0,2 bar system pressure drop. This will ensure that pipe line losses are minimised.

* Install correctly sloping air lines to ensure good condensate drainage.

* Install the necessary isolation valves to provide efficient management of the compressed air mains in the event of future line changes and maintenance.

* Install an oily waste water condensate management system from the compressor and dryer system. A litre of oil can infect a million litres of water.

* Do not use the diameter of the compressor outlet as a guide for pipeline design. Often compressor manufacturers specify very tight discharge ports.

These are just some of the issues to be considered before a design is finalised. Inadequate design and poor selection of equipment can inflict huge hidden costs on a company and can add hundreds of thousands of rand to the energy bill. It pays to avoid pitfalls at the design stage.

For more information contact Allen Cockfield, Artic Driers, +27 (0)11 425 3484, [email protected], www.articdriers.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power supply with scalability optimised
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has introduced the Easy UPS 3-Phase Modular to the South African marketplace. This robust uninterruptible power supply (UPS) is designed to protect critical loads while offering third-party verified Live Swap functionality.

Read more...
Prioritising arc flash safety
Comtest Electrical Power & Protection
Comtest has developed a range of thermal imaging and wireless testing tools from Fluke, designed to ensure safety is the top priority for engineers working in potentially dangerous arc flash zones.

Read more...
Monitoring the voltage drop in cables
Turck Banner Southern Africa Electrical Power & Protection
With its new M12Plus connectors, Turck Banner is directly shifting the condition monitoring of cables subject to severe stress to the connection technology. The connectors, which come with voltage and current monitoring and a Bluetooth chip, enable measured voltage and current values to be sent wirelessly to a controller.

Read more...
Mesh networks: a multidirectional electrical superhighway
Schneider Electric South Africa Electrical Power & Protection
Today, many power industry stakeholders are faced with mounting requirements for improved grid reliability, resilience and distribution efficiency. It’s a challenge which requires power service providers to rethink their infrastructure. Enter mesh networks, which can overcome the limitations of traditional star networks.

Read more...
Versatile flexible copper busbar
Electrical Power & Protection
Referro Systems specialises in the supply and support of industrial electrical, automation and global software and hardware brands, and is now able to offer the Cubic range of Cu-Flex flexible copper busbars.

Read more...
Trafo Power Solutions upgrades DRC mine transformers
Electrical Power & Protection
With its experience in Africa and its agility in executing projects rapidly, Trafo Power Solutions is supplying three mini-substations and two transformers to a copper-zinc mine in the Democratic Republic of Congo.

Read more...
Acquiring locally-manufactured transformers
ACTOM Electrical Machines Electrical Power & Protection
Speed and efficiency are of the essence in the fast-evolving power generation and distribution space; but a significant challenge is the prolonged lead times associated with acquiring transformers – key components in any electrical infrastructure.

Read more...
Seaward testers power PV specialists
Comtest Electrical Power & Protection
One of Asia’s leading clean energy specialists, Solarvest, uses the latest electrical safety test equipment to ensure the solar photovoltaic (PV) installations it services and maintains operate at peak performance levels.

Read more...
Multi-purpose contact block
Electrical Power & Protection
The TME catalogue has been expanded to include products from Schlegel. This German, family-owned company has been specialising in the production of high-quality electromechanical components for almost 80 years.

Read more...
ACTOM supplies transformer units to Kamoa Copper Mine
ACTOM Electrical Machines Electrical Power & Protection
ACTOM Distribution Transformers, recently secured an order for the supply of its neutral electromagnetic couplers, with earthing resistors, and an auxiliary transformer) to Kamoa Copper Mine in the DRC.

Read more...