This application note discusses the nature of the threat to electronic instrumentation and communications networks posed by voltage surges induced by lightning or other causes.
The practical application of surge protection devices (SPDs) designed to prevent damage from such sources is described. It is the intention to discuss suitable techniques to protect electronic circuits and equipment from high voltages and surge currents induced by lightning and other forms of transients.
The need for surge protection
Most process control or telemetry installations are interconnected by power and signal cables which run on trays, in ducting or via overhead poles. Lightning strikes, static discharges and induction from power cabling are typical sources of transient voltages which can be coupled into signal cables and hence transmitted to electronic equipment. Field transmitters, computer terminals, etc, containing low-power semiconductor devices can be damaged by over voltages of only tens of volts. The longer the cables, the more frequent the occurrence of high voltage transients through shifts in ground potential, so devices controlling or monitoring events in remote locations are more likely to suffer from over voltages and consequent component failures. Significant damage can also be found in equipment connected by relatively short cables if the circuits or components are particularly sensitive – as is the case for computer data communication ports.
As an illustration, consider the effects of a lightning strike to a building housing control and telemetry equipment, of which the fabric is protected from a direct strike by lightning conductors and ground rods. The conductor carries the very large strike current to ground where the charge transfer is dissipated into the mass of the earth.
The effect of this current is to elevate the reference potential at the building. For example, if the strike current is 100 kA and the conductor/ground impedance is 10 Ω, then the potential above ground is 1 million volts. Exposed metalwork within the building is bonded to the same reference potential and so only small voltage differences exist that pose little risk to personnel.
However, consider a field transmitter pole-mounted away from the control building but connected to the telemetry electronics by signal cabling. Most transmitters incorporate some level of isolation from structural earth, typically 500 V. This level of isolation now has to withstand the transient voltage between the new building reference potential and its local earth potential. Many transmitters can be destroyed in this way, even though the actual lightning strike was to a protected building.
Readers wishing to find out more about surge protection devices and strategies can view the full application note at: http://instrumentation.co.za/+C13509
South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.
Read more...Real-time modelling is the key to a resilient, bi-directional energy grid Schneider Electric South Africa
Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.
Read more...Shielding data centre growth from the looming power crunch Schneider Electric South Africa
Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.
Read more...Circuit breaker innovations Schneider Electric South Africa
Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.
Read more...Common battery tester errors and what they mean Comtest
Electrical Power & Protection
Battery testers help quickly assess battery health, diagnose issues, and determine whether a battery needs a charge or replacement. This guide covers some of the most common battery tester errors, what they mean, and what can cause them.
Read more...Cathodic protection design considerations that influence ESG outcomes Omniflex Remote Monitoring Specialists
Electrical Power & Protection
Major infrastructure like wharves, bridges, pipelines and tanks are at constant risk of corrosion. David Celine, managing director of cathodic protection specialist Omniflex, explains how CP system design can support ESG commitments, while simultaneously lowering costs and improving maintenance capabilities.
Read more...Recovering condensate and waste heat
Electrical Power & Protection
According to Associated Energy Services, strong partnerships with thermal energy users optimise opportunities to benefit from condensate return. waste heat recovery and the prevention of system contamination.
Read more...Quantum engine powered by particle entanglement
Electrical Power & Protection
In a landmark achievement that signals a new era in energy research, a team of physicists in China has carried out the first successful test of a quantum engine powered by particle entanglement. This technological breakthrough represents a fundamental shift in our approach to energy production.
Read more...Windows tablets for Zone 1/21, Zone 2/22 and mining Extech Safety Systems
IS & Ex
Extech is expanding its portfolio with the Windows-based tablets IS945.1, IS945.2, and IS945.M1. For the first time, EX certification is combined with full Windows compatibility, without compromising on software or security.
While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.