IT in Manufacturing


A protocol for all industries

August 2008 IT in Manufacturing

Historical information gathering for distributed networks, where different media such as radios and cellular networks are used, has always been limited in terms of the system response. The bigger the system became, the slower the update times. In an effort to remove the influence of the communication architecture on the system response, a distributed network protocol was designed, and the two flavours of this were called DNP3 and IEC 60870-5. IEC 60870-5 is the protocol mostly used in the electrical industry. IEC 60870-5 is used widely in Europe, while DNP3 is used in the rest of the world.

Typically DNP-data contains not only the value for a data point, but also the quality and timestamp, and the specification allows for the controller to buffer the data for communications delays and failures. In simplistic terms it can be said that one should be able to obtain system responses expected from non-distributed system from for instance a radio system by using DNP.

In a DNP-system, one has DNP-Masters, DNP-slaves, DNP-Routers as well as DNP-Mapping to coordinate the architecture. Optional parameters in the DNP-protocol that like time synchronisation, retries, time-outs and confirmation messages are also used. The DNP-protocol can be implemented as a polled event where a time stamped value is transmitted on request, or an unsolicited response. In such cases a value is defined in terms of classes, and each class has its own hold time and hold count. If the hold time is 60 seconds, and the hold count is 10, it means that if the value changed outside of its dead band, more than 10 times before 60 seconds has elapsed the 10 time stamped values will be sent to the DNP-Master. The DNP master can be a controller or data concentrator or a DNP-enabled SCADA.

This report by exception (RBE) functionality allows slaves to send messages to the master, and the master needs to minimise clash avoidance and initiate recovery.

Typical applications where recording and logging events and periodic data from remote sites include:

* Non-continuous communications links (cellular, satellite and dial-up interfaces may be polled infrequently to reduce operational costs. Many only initiate calls for high priority events or alarms).

* Low power operation (infrequent communications for power management).

* Metering applications (hourly, daily and monthly totals).

* Time stamped events (sequence of events communication, failure and recovery).

With most other protocols, remote site RTU configurations can quickly become very complex because of aspects such as:

* Mapping of data.

* Conversion of data formats.

* Triggering of event logging.

* Triggering of messages.

* Retrying of failed messages.

DNP is designed to answer these problems with:

* Each device has addressing for over 65 000 points of each object type.

* Automatic time synchronisation of all devices.

* Automatic time-stamped events.

* Data class and priority configuration.

* Broadcast and polled messages.

* Capability for large messages (>2 kBytes).

Because DNP is an open protocol three levels of compliance have been certified:

* Level 1 – Basic slave ie an I/O device.

* Level 2 – Smarter slave/master ie a PLC/RTU.

* Level 3 – Very smart slave/master.

For a demonstration of a controller/SCADA environment that is Level 3 compliant, contact Jaco Hoogenboezem on [email protected]

For a demonstration or more information contact Jaco Hoogenboezem, SCADAGroup, +27 (0)83 282 5706, [email protected], www.controlmicrosystems.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...
Enhancing cyber security for industrial drives
Siemens South Africa IT in Manufacturing
The growing connection between production networks and office networks as part of IT/OT integration and the utilisation of IoT have many benefits for industrial companies. At the same time, they also increase the risk of cyber threats. Siemens ensures that your know-how and plants are protected at all times.

Read more...
Immersion cooling systems for data centres
IT in Manufacturing
The demand for data centres in Africa is growing. The related need for increasing rack densities brings with it escalating cooling requirements.

Read more...
Transforming pulp and paper with automation and digitalisation
ABB South Africa IT in Manufacturing
The pulp and paper industry in South Africa is undergoing a significant transformation from traditional manual processes to embracing automation technologies. Automation in pulp and paper mills aims to improve various production stages, from raw material preparation to final product creation.

Read more...