Fieldbus & Industrial Networking


Maintaining healthy IT assets

September 2006 Fieldbus & Industrial Networking

Over the past several years, there have been two significant trends in the industrial marketplace. Firstly, control system vendors are using more Ethernet-based communication networks and Microsoft operating systems. Secondly, many companies have an increased focus towards predictive or condition-based maintenance. OPC plays an important role in both trends.

Most of the major distributed control system (DCS), programmable logic controller (PLC), supervisory control and data acquisition (SCADA) and control system vendors are heavily utilising Ethernet-based communications as part of their distributed architectures, including routers, switches, and cabling. In addition many operator stations, engineering consoles and application platforms run on PC hardware using Microsoft operating systems. Companies that purchase and implement these systems also have other industrial assets, such as pumps, compressors, boilers, manufacturing devices, and other mechanical equipment. The pressure is on their mechanical maintenance departments to move towards predicative or condition-based maintenance. The concept is simple: good, accurate and timely information on the state of the assets can be used to detect and correct impending problems before they become untimely, catastrophic failures. Finding out about a problem after it occurs, inevitably leads to more severe damage, longer downtime and loss of production and money.

It is all well and good that companies are looking to this approach for their vibrating, rotating, thermal and other mechanical-based assets. However, in many cases they do not include the IT hardware associated with the collection, transmission, storage and analysis of this data in their approach. There are several reasons these key assets are ignored. They are often considered non-critical, since the IT hardware is commonplace and inexpensive. Lack of domain experience is also a factor. Control engineers do not have extensive training in IT, or the time to invest in learning the technology or keeping up to date. Similarly, IT professionals often do not have a process control background, resulting in a lack of trust and understanding between the two groups. Unfortunately, the main reason is simply a lack of awareness.

When determining what data points are important for analysis or when putting together a maintenance process, people often overlook the connecting IT infrastructure and the data communication paths. Also, process monitoring and IT monitoring tasks belong to different groups with different responsibilities, even though they share key assets. This results in a significant lack of integration between groups, even though the information and data is important and readily available.

There are many network management systems (NMS) and software packages available on the market today. These have been developed and designed for managing the office-based IT infrastructure, and do this relatively well. The problem is these systems are rarely accessible by the process and maintenance groups, who require certain key status values to ensure the integrity of their systems. This data is readily available today via OPC products. The IT community has a widely adopted Internet standard protocol, SNMP (Simple Network Management Protocol) which was developed to manage nodes (servers, routers and hubs) on an IP network. In addition, all Microsoft Windows operating systems provide easy access to performance monitoring information, such as memory usage, disk space, and CPU usage. The key is getting all this information to people that can act on it in a timely manner. OPC is being used to do exactly that.

Industry pace setters are realising that monitoring IT assets is just as important as any other piece of equipment. For example, a large North American power company is currently using a suite of OPC products, the Matrikon OPC IT Health Monitor system, to monitor its IT assets in the same way that it monitors traditional plant equipment, and uses it to notify the correct personnel when problems appear.

OPC Servers are available to collect data and status information from a wide range of devices and systems. The OPC Server for SNMP provides connectivity to all their SNMP compliant devices such as network switches, routers, UPS (uninterrupted power supply) systems and other network devices. The OPC Server for Windows Task Manager (performance monitor) enables the display or archive of performance information on each PC and its individual processes.

Key performance indicators and critical status tags are collected using OPC and are used to populate graphs and reports on the system HMI in realtime. In addition, the data is stored in their long term process historian for later cause analysis and predicting failure trends.

Another key component of the OPC IT Health Monitor system is the notification system that provides both e-mail and OPC alarms and events (A&E) messages for the monitoring of realtime OPC data sources. In addition to using this system to notify the appropriate personnel when required, the company is using the OPC A&E interface to forward the IT asset alarms to its alarms and events historian. This will allow it to perform its standard alarm management and rationalisation process on its IT assets, just like any other plant equipment.

The OPC IT Health Monitor application is not a replacement for the traditional NMS system. Rather it utilises OPC to gather critical status and reliability information from the IT assets, and gets that information into the domain of the process and maintenance personnel. OPC provides a standard, scalable way to collect and archive critical IT asset data and deliver it to the decision makers so that it can be acted on in a timely manner. Getting the right data, to the right people, at the right time invariably has the right impact on the bottom line.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

EtherCAT interoperability removes industrial networking barriers
Fieldbus & Industrial Networking
Selecting the right communication technology is one of the most important decisions engineers make, and interoperability helps with that decision. Key development tools and standards ensure interoperability among many EtherCAT devices and manufacturers.

Read more...
Condition monitoring to go
Turck Banner Southern Africa Fieldbus & Industrial Networking
Anyone who wants to efficiently monitor the climate in control cabinets will find a comprehensive range of control cabinet monitors for the DIN rail in Turck Banner’s cabinet condition monitoring family.

Read more...
Affordable building management system product range
Fieldbus & Industrial Networking
Schneider Electric has unveiled its EasyLogic Building Management System range, designed for basic building architectures, to the local marketplace. This is a complete and cost-effective range of field controllers and sensors that are both easy to install and scalable.

Read more...
Flexible EtherCAT communication interface for DALI-2
Beckhoff Automation Fieldbus & Industrial Networking
The EL6821 EtherCAT Terminal from Beckhoff allows up to 64 DALI/DALI-2 slaves and 64 DALI-2 input devices to be connected. The TwinCAT 3 System Manager makes it easy to configure and parameterise DALI devices flexibly.

Read more...
EtherCAT-based control technology for building automation
Beckhoff Automation Fieldbus & Industrial Networking
Modern non-residential buildings place many high demands on building automation. This can be optimally implemented with EtherCAT-based control technology from Beckhoff, which provides an efficient central automation architecture thanks to ultra-fast data communication.

Read more...
PC-based control for university studies
Beckhoff Automation Fieldbus & Industrial Networking
The IDEA box developed at Heilbronn University of Applied Sciences is designed to introduce students to the topic of Industry 4.0 in a simple and practical way. At the core of the corresponding demo case is PC-based control from Beckhoff.

Read more...
A new standard in high-speed Ethernet communication
Fieldbus & Industrial Networking
The TXMC897 module from TEWS Technologies supports a range of Ethernet standards and speeds, making it suitable for diverse applications, including the defence, industrial, and IIoT markets.

Read more...
Data-driven battery production
Turck Banner Southern Africa Fieldbus & Industrial Networking
The availability of high-performance batteries at moderate prices is one of the most important factors for the success of electromobility. As a long-standing automation partner to the automotive industry, Turck Banner supports the major battery manufacturers with its know-how.

Read more...
Bring critical temperature data to your condition monitoring system
Turck Banner Southern Africa Fieldbus & Industrial Networking
Data conversion just got easier. Turck Banner converters are compact, simple add-ons that seamlessly fit into your factory applications. You can take various types of signals such as discrete, analogue and many others, and convert them to protocols like IO-link, PICK-IQ, PWM/PFM, and Modbus.

Read more...
Case History 190: Measurement problem ruins level control.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The widely held belief in many plants that tuning will solve all base layer control problems is completely fallacious. Bad tuning is generally not the main reason for loops to perform badly. It is important when performing optimisation that all elements in a loop are considered, in addition to the control strategy, before even thinking of tuning.

Read more...