IT in Manufacturing


Real-time data increases metal recovery at Peñasquito mine

November 2019 IT in Manufacturing

Newmont Goldcorp, the world’s largest gold producer, has embarked on a digital transformation journey to optimise its portfolio of high-quality mining assets, reinvest in its people and technology, and drive increasing margins and returns on investment. To this end, the company is exploring a wide variety of digital technologies, including autonomous drilling, drones, mixed and augmented reality, machine learning, and data analytics and visualisation.

At a recent OSIsoft User Conference in California, ARC Advisory Group had an opportunity to learn about a related project at Newmont Goldcorp’s flagship Peñasquito gold, silver, zinc, and lead mine in Mexico. According to Derek Shuen, superintendent, electrical, instrumentation, process control & energy management at Newmont Goldcorp, the company had been using the PI System at its flagship Peñasquito mine since 2012 to integrate and historise data sources across the mine site, but was not getting the most value from the data.

In 2017, as part of Newmont Goldcorp’s larger “20/20/20” five-year initiative to improve business performance, the corporate IT group hosted a joint workshop in conjunction with OSIsoft. The workshop participants wanted to focus on an area that would be relatively easy to achieve, did not require a capital investment, and had the potential for good results. While several other options were discussed, the team decided that enhanced metal recovery stood out as the best opportunity for quantifiable improvement that could be achieved in a relatively short time frame.

Feed variations require prompt operator response to maximise metal recovery

The flotation circuits at open pit mining operations such as Peñasquito are highly susceptible to feed variations. To optimise metals recovery, operators have to manually adjust up to eight different reagents. The operator’s ability to react to feed variations will often largely determine recovery performance.

Previously, the mine had seen its metal recoveries dip for no apparent reason. These types of losses can extend for several hours if the operator is not vigilant or does not have the right data.

Prior to this pilot project, to establish baseline performance targets for the operators, Newmont Goldcorp’s Technical Services had used regression analysis on daily, weekly and monthly historical data to correlate and establish baseline targets for economic recovery of the various precious (gold and silver) and base (zinc and lead) from the feed grades. Since Technical Services only updated these equations every two years or so, the targets rarely varied, regardless of the nature of the ore feeds.

For the flotation cell operators, the recovery target was typically pegged at 70 percent and rarely adjusted. Since the established targets were based on past historical data, rather than current operations, they were not really meaningful for the operators who thus tended to operate the cell in a largely ‘open loop’ manner. This resulted in inconsistent operating practices between shifts and individual operators and the unexplainable dips in extraction performance, resulting in recovery losses.

Developing more meaningful recovery targets

To develop more meaningful recovery targets for the flotation cell operators, the team incorporated the equations previously developed by the Technical Services group into PI Performance Calculations, which generate dynamic baseline recovery targets based on real-time data. On-stream analyser measurements taken at the head and tail of the Sulfide Plant flotation circuit are correlated in the PI System to provide operators with real-time performance trend feedback. In effect, this became what Shuen referred to as “a dynamic simulator” for recovery performance. By operating closer to these targets, the operators would be able to enhance recovery performance. Of course, the operators first had to be trained to understand and make best use of these new data to respond to ore-related and other recovery dips.

PI Vision dashboards were placed on the plant operating floor and in the control room, providing field and control room operators alike with the needed access to real-time performance data. Operators now rely on the trends from the dynamic simulator, which, according to Shuen, serve as KPIs, to guide them so that they can make decisions based on where they should be performing.

Improving metal recovery

Along with other factors, being able to visualise real-time recovery rates resulted in tangible improvements in metal recoveries at Peñasquito’s flotation circuit. Now, recoveries meet and exceed the calculated predictions. Once operators were properly trained and understood how to use the data, the company achieved notable performance improvements in economic metals extraction.

Benefits of using the dynamic simulator

According to Shuen, in the first six months of implementation, the mine saw a four percent improvement in zinc recovery alone, not accounting for lead improvements over six months. Over 12 months, the company saw a seven percent overall improvement in zinc recovery. These recovery improvements equated to an additional 4,5 days of production per month. Improved equipment reliability also contributed to improvements, including:

• Improved stability of operator performance.

• Reduction in recovery variations.

• Greater accountability of operators.

• Overall improvement in metal recoveries for lead, zinc, gold, and silver which equates to huge bottom line benefits.

As we’ve seen, by making better use of its data, Newmont Goldcorp achieved tangible operational and business improvements without requiring additional capital investment. According to Shuen, the dynamic simulator’s ability to show operators where they should be at any time, has driven a major cultural change at the mine. “We went from a tool that was largely ignored, to one that operators could not live without,” he concluded.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Bringing brownfield plants back to life
Schneider Electric South Africa IT in Manufacturing
Today’s brownfield plants are typically characterised by outdated equipment and processes, and face challenges ranging from inefficient operations to safety hazards. However, all is not lost, as these plants stand to gain a lot from digitalisation and automation.

Read more...
Generative AI for immersive real-time visualisation
Siemens South Africa IT in Manufacturing
Siemens will deepen its collaboration with NVIDIA to help build the industrial metaverse.

Read more...
Award-winning Gen AI solutions
IT in Manufacturing
Amazon Web Services recently hosted an exclusive event in South Africa on ‘Elevating Possibilities with Partners - a Showcase of GenAI Excellence’. This event brought together ten esteemed partners, including Synthesis Software Technologies, to highlight innovative advancements in the field of Generative AI.

Read more...
AI is driving data centres to the edge
Schneider Electric South Africa IT in Manufacturing
The data centre has become the cornerstone that links our digitally interconnected world. At the same time, the rapid growth and application of AI and machine learning (ML) is shaping the design and operation of data centres.

Read more...
Full-scale central control room simulator
Valmet Automation IT in Manufacturing
Valmet will deliver a full-scale central control room simulator to Nordic Ren-Gas, the leading Nordic green hydrogen and e-methane developer in Finland.

Read more...
Re-imagining business operations with the power of AI
IT in Manufacturing
inq. has introduced a range of artificial intelligence solutions to assist organisations across industry verticals in optimising business operations and improving internal efficiencies.

Read more...
Safe, sustainable cycling helmet technology
Siemens South Africa IT in Manufacturing
Lazer Sport, one of Europe’s leading cycling helmet manufacturers, has adopted the Siemens Xcelerator portfolio of industry software to bring to market KinetiCore, its new proprietary rotational impact protection technology.

Read more...
Defending against modern-day cyber threats
IT in Manufacturing
The anatomy of cyber threats has changed, meaning that organisations can no longer rely on traditional cybersecurity solutions to protect their perimeter, but should instead rethink their data protection strategy and become proactive in their defence against breaches.

Read more...
Data centre sector 2024 market outlook
IT in Manufacturing
As the world adapts to the digital transformation of almost every aspect of everyday life, the data centre sector, which plays such a pivotal role in digitalisation, is constantly evolving.

Read more...
Reinventing the workforce in the age of generative AI
IT in Manufacturing
Generative AI has burst onto the scene. It appeared fast, and is evolving even faster. Its impact on value chains will fundamentally transform the nature of work, reshaping how businesses deliver value, and delivering better experiences for employees and customers.

Read more...