IT in Manufacturing


Safety and cybersecurity convergence goes beyond safety systems

August 2019 IT in Manufacturing

Cybersecurity is playing an increasingly important role in process safety systems. This became apparent with the cyber-attack on a safety system late in 2017 that ultimately ended in the safe shutdown of a Middle Eastern petrochemical facility. Process safety systems provide the last line of defence to shut down a plant safely in the event of an abnormal situation. Attacks on safety systems have the potential to cause real harm in the physical world, so it’s important that ICS/scada cybersecurity policy include rational approaches to process safety systems.

However, the scope of safety and cybersecurity goes well beyond process safety systems alone. Across the industrial and infrastructure worlds, an increasing number of end users are adopting more sophisticated strategies for risk management. This drives closer cooperation and convergence between the safety and cybersecurity disciplines.

This convergence manifests itself in several ways. An increased focus on risk management helps end users justify increased spending on cybersecurity. Many end users are adopting the concepts of process hazard analysis (PHA) and hazard operability analysis (HAZOP). Suppliers are obliging with cyber-focused services that incorporate key concepts from PHA and HAZOP. These include layers of protection analysis (LOPA) and risk matrices that analyse the consequence and severity of actions in operating environments.

Cost and impact of cyber incidents vs safety incidents

At the operational technology (OT) level, both cybersecurity and safety-related projects can be challenging to cost justify and thus gain approval. Both domains protect against what could happen to help avoid a cyber-attack or plant incident. The financial impact of either could be massive.

The BP Deepwater Horizon oil spill, for example, is estimated to have cost the company $65 billion in clean-up costs, legal fees, and fines.

The cost of cyber incidents can be just as damaging, with a simple ransomware attack costing an average of $5 million for companies across the board. The impact on industrial plants and facilities, however, is much greater. In 2017, a Tokyo-area Honda plant was forced to shut down because of WannaCry ransomware. In this case, the plant controls were not compromised, but the ransomware attack was virulent enough to shut down operations in a plant that produces around 1000 vehicles a day.

Even if a refinery or chemical plant is able to shut down safely when faced with a cyber incident, as we saw in the Middle East in 2017 with the Trisis/Triton malware incident, a single unplanned shutdown can wipe out the profits of a refinery or petrochemical plant for the entire year.

Increased focus on risk management

For many end users in manufacturing and critical infrastructure, cybersecurity policy focuses on countering potential threats by reducing exposure to phishing, beefing up password security, etc. ARC Advisory Group’s maturity model for cybersecurity enables end users to measure their own overall level of security and sophistication. Many end users are realising, however, that they cannot possibly address every threat all the time and are thus looking at the science of risk management to help prioritise their efforts.

Cyber risk no longer exclusive of physical risk

Significantly, cybersecurity risk is no longer limited to the cyber world but can have very real consequences in the physical world. These risks exist along a spectrum of severity that ranges from simple unplanned downtime in operations to a plant explosion or release of hazardous materials. Stuxnet, which proved that physical assets like nuclear centrifuges can be destroyed through cyber-attacks, gave birth to this realisation. And even though the initial attack resulted in a safe plant shutdown, the Triton/Trisis malware showed that process safety systems could be compromised and reprogrammed maliciously so as not to shut down a plant or process in case of an abnormal situation.

Since the malware and attackers will only get more sophisticated over time, we can no longer view safety and cybersecurity as separate domains.

Standard risk management approaches from the IT world

The information technology (IT) world is no stranger to standard risk management approaches for cybersecurity. FAIR (factor analysis of information risk), for example, is an established international standard quantitative model for cybersecurity and operational risk. It provides a model for understanding, analysing, and quantifying information risk in financial terms.

FAIR is supported by an open consortium of which The Open Group is a key member and supporter. The Open Group has also introduced the Open FAIR Body of Knowledge, together with a certification program for risk analysts.

Aside from FAIR, many service providers, insurance companies, and software companies will measure cyber risk and/or offer solutions to reduce that risk.

HAZOP and PHA Approaches: from safety to cybersecurity

Risk assessment methodologies and scoring systems for cybersecurity in ICS/scada and OT in general are also finding increased traction. Several suppliers that compete in the process safety lifecycle management space are applying their knowledge of process hazard analysis and risk management to cybersecurity.

Coordination between standards

In 2002, the International Society for Automation (ISA) made the deliberate decision to commission the ISA99 committee to develop standards related to industrial cybersecurity that would have implications for existing standards in the portfolio. The alternative would have been to ask all other committees to incorporate security retroactively into already published standards.

As a consequence, standards efforts for manufacturing at the OT level are separated into the ISA/IEC 62443 cybersecurity-related set of standards and the ISA84/IEC 61508 and 61511 efforts related to process safety. The ISA99 work group 7 and ISA84 work group 9 are liaising to coordinate the treatment of safety and security between these two committees. The intersection of security and safety is one a fundamental concept behind the ISA/IEC 62443 standards.

Addition of physical security

End users are also discovering that physical security, cybersecurity, and safety all overlap. Increasingly, access control systems, video surveillance systems, employee geolocation tagging solutions, and other technologies are being looked at from a holistic perspective alongside cybersecurity and safety solutions. New technology approaches like the Internet of Things (IoT) are making it much easier to combine information from these systems to create a better overall picture of physical security, cybersecurity, and both process and overall safety.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1141, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Unlocking mining efficiency with advanced processing control
IT in Manufacturing
ABB’s Advanced Process Control system, powered by its Expert Optimizer platform, is emerging as a key enabler of smarter, more efficient mining operations.

Read more...
Open control technology reduces energy consumption and carbon footprint.
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
Harnessing AI and satellite imagery to estimate water levels in dams
IT in Manufacturing
Farmers and water managers often struggle to accurately estimate and monitor the available water in dams. To address the challenge, International Water Management Institute researchers have worked with Digital Earth Africa to create an innovation that uses satellite images and AI to get timely and accurate dam volume measurements.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Track busway for scalable data centre power delivery
IT in Manufacturing
The latest generation Legrand Data Centre Track Busway technology addresses the operational pressures facing today’s high-density, AI-intensive computing environments and is being well received by data centre facilities around the world.

Read more...
Poor heat management in data centre design
IT in Manufacturing
Designing a world-class data centre goes beyond simply keeping servers on during load shedding; it is about ensuring they run efficiently, reliably, and within the precise environmental conditions they were built and designed for.

Read more...
It’s time to fight AI with AI in the battle for cyber resilience
IT in Manufacturing
Cybercrime is evolving rapidly, and the nature of cyber threats has shifted dramatically. Attacks are now increasingly powered by AI, accelerating their speed, scale and sophistication. Cybersecurity needs to become part of business-critical strategy, powered by AI to match attackers’ speed with smarter, faster and more adaptive defences.

Read more...
Why AI sustainability must be a boardroom priority
IT in Manufacturing
As South African companies race to harness artificial intelligence for innovation and growth, few are asking the most critical question - the environmental cost.

Read more...
RS South Africa shines spotlight on MRO procurement
RS South Africa IT in Manufacturing
RS South Africa has highlighted the growing pressures faced by procurement professionals responsible for maintenance, repair and operations supplies across the country’s vital economic sectors.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved