Modern technology can be harnessed in ways that allow people to collaborate with business intelligently, efficiently and sustainably. An example is the 2D laser scanners, which SICK has applied to crop robots in order to assist a scientific project at Wageningen University and Research Centre.
The problem: how do you navigate agricultural robots through a field? The challenge of this application can be found not only in the wide variety of crops out there, but also in the fact that crop rows are neither completely straight nor all the same width. Wageningen University and Research Centre developed a solution that uses SICK Automation's LMS111 2D laser scanner.
Precision agriculture
Precision agriculture is on the rise, but what does it mean? It is a practice that marks a move away from the model of subjecting every field to a standard treatment and instead takes a semi-tailored approach that considers the requirements of each crop. Custom sowing, fertilisation, pesticide application and disease control have the potential not only to save money, but also reduce impact on the environment.
However, efficiency benefits that precision agriculture brings are unfortunately not yet enough to outweigh the performance of the large, fast farm machinery that save significant amounts of manpower.
Recently, however, a solution to this problem has been introduced in the form of small agricultural robots that are able to work in fields 24 hours a day, slowing down or stopping as the situation demands, and operating almost entirely without human input.
Navigation without GPS
A good navigation system is one of the fundamental requirements for using agricultural robots successfully. The system must be able to account for deviations in the shape and size of crops, crooked rows of differing widths, as well as other irregularities.
Standard GPS systems are not up to the job. For this reason, the Wageningen University and Research Centre developed a navigation process in which robots would instead be guided by a 2D laser scanner from SICK Automation.
The LMS111 2D collects raw data and then filters the information it needs out of this. A range of practical tests were performed during the growing season to check whether the system was functioning as it should. The results proved that it is indeed a viable solution for navigating crop areas cultivated using conventional methods.
Summing up, the Centre's Dr Frits van Evert states: "We have invested a great deal of time and energy in this project. Just recently, our efforts put us in a position to publish our findings in a leading scientific journal. I would therefore like to express my sincere thanks to SICK for providing us with the laser scanner for our research."
For more information contact Mark Madeley, SICK Automation Southern Africa, +27 10 060 0550, [email protected], www.sickautomation.co.za
Tel: | +27 10 060 0550 |
Email: | [email protected] |
www: | www.sick.com/za/en/ |
Articles: | More information and articles about SICK Automation Southern Africa |
© Technews Publishing (Pty) Ltd | All Rights Reserved