IT in Manufacturing


Using IIoT analytics to build customer solutions

October 2018 IT in Manufacturing

Data fuels the progress of our digital world in many ways: personal devices, medical systems and online commerce, for example. But public works systems, factories and transportation can also benefit from the collection and application of data. This realisation has driven heavy investment in the Internet of Things (IoT) across all major industrial markets. Everyone is seeking value in their IoT application. However, without a well-defined analytics strategy, it is hard to make sense of the data collected.

Device data has value when it can be collected, analysed, interpreted and then used to derive insights to drive improvements in productivity. These productivity gains scale in value according to the level of insight and automation of the system in question. Solutions can be as simple as remote diagnostics and as advanced as self-optimising control systems. The journey to move from diagnostics up through automation starts with understanding the problems that need to be solved.

In industrial IoT (IIoT), the primary objective is often to monitor and optimise equipment health and productivity. This requires machine-level insights, so that machines can self-report the difference between optimum and actual performance. But machines themselves tend to be systems of systems, each crafted from components. Often, generating insights at a machine or system level requires deep visibility at the component level. These components need to be represented digitally as models for expected behaviour, and by combining these digital representations, customers can understand when their systems are exhibiting suboptimal performance.

Parker’s Voice of the Machine

These component and subsystem-level insights are where Parker Hannifin shines. In fact, Parker’s century of experience in motion and control technologies and its understanding of systems and components are the foundation of the company. Parker’s focus in IIoT – through its platform called Voice of the Machine – is on component and subsystem-level insights referred to as Discrete IoT. Discrete IoT is a component-centric approach, where distinct component insights form the foundation for higher-level system, machine and even fleet level productivity gains.

Parker’s approach to deriving value from the IIoT centres on contextualising the data collected from machines. Models of both the overall system and of the individual components are constructed and then leveraged to produce insights. It is a mirrored reality where digital twins of components are connected to build digital twins of systems, much like the way their physical counterparts are assembled. Once insights are identified, opportunities emerge for customers to create actionable improvements (e.g. adjustments, fine-tuning and modifications) within their existing processes and systems. Supported with the model-validated insights, Parker’s customers who leverage Voice of the Machine solutions are better equipped for decision-making, planning and management of their operations.

How Discrete IoT empowers decision making

The real value of the IIoT comes from the ability to derive useful information from machine data. To enable that type of decision making, machine and component knowledge must be combined with top-level operational goals.

Understanding of the current state of an asset, along with the repercussions of possible actions, allows the costs and benefits of decisions to be evaluated before they are made, helping to determine the best strategy to drive towards the company’s goals.

Consider the task of scheduling maintenance for a factory machine. Decisions about stopping machines, interrupting operations and performing maintenance often depend on many factors: What is the production schedule? Is there planned downtime coming up? How much will it cost to replace? What is the loss of performance cost compared to the cost of replacement? How long will the machine be down? If a worn component does not get changed, how will that affect performance or safety? Understanding the answers to these questions is central to making better decisions. But, just as important, is collecting and analysing the right data in a way that delivers actionable insights about the machine itself.

For instance, deciding what to do with a clogged filter requires an understanding of the possible scenarios that might play out if the filter continues to clog and decreases flow in the machine. Those scenarios include not only what happens to the filter but also the impact on the machine’s operation, such as diminished product quality. These types of questions can be addressed through machine and component models.

In this situation, component modelling effectively tracks filter blockage over time, letting the machine operator know how blockage increases pressure and reduces filtration efficiency. However, determining when the filter reaches the point where it must be cleaned or replaced involves big-picture information about the operational trade-offs between downtime and performance. This knowledge allows the machine owner to optimise machine health and output, improve service scheduling, calculate costs for downtime and minimise negative impacts like clogged filters. The start of all of this analysis originates with the knowledge of a single component – the filter.

How digital twins deliver insights

In many cases, data enables optimisation of Parker’s products in customer applications. The ability to maintain online virtual models (digital twins) of physical assets is key to the process. Sensor data from the actual device is sent to the cloud, where the digital twin algorithm maintains parity with the asset’s current state. It is the actionable insights discovered through these digital twins that guide IIoT analytics at Parker.

The most immediate use of a digital twin is to compare the ideal or expected state with the current state of the machine. If the component is working as intended, these two should align. Any discrepancy can provide insight about what is broken on the machine and the amount of service life remaining in consumable elements inside the machine. Digital twins form the foundation of advanced condition monitoring.

For example, Parker’s IQAN Connect product helps OEMs remotely connect to the electronic control systems in heavy-duty mobile machinery, enabling them to collect diagnostic information as if they were in the field, hooked up to a test set. Comparing actual and expected component performance enables weekly reports on overall fleet health and alerts operators to any recommended action.

Another way digital twins enable insights is by allowing customers to infer physical values that are not directly or easily measured, helping to reduce measurement costs and decreasing the number of data points needed. Additionally, quantities that are not measurable, such as fatigue state or wear level can be effectively estimated. This helps move from a ‘measure everything’ mind-set to measuring as little as needed and computing the rest.

Finally, digital twins help by allowing customers to explore future outcomes for a range of possible scenarios. For example, questions such as: “When will this filter clog enough to affect quality of output?” and “What would happen if I did nothing?” can be answered. Knowing how each scenario will play out provides actionable information. Exploring how different decisions impact the future, and then choosing the best course of action, yields performance optimisation. Digital twins enable predictive scenarios where operators, or even the machines themselves, can choose the actions that lead to the best possible outcomes.

As an example, it is possible to detect leakage on a hydraulic cylinder. But if that cylinder is part of an excavator on a job site, users will want to relate that cylinder’s hydraulic fluid loss to declines in excavator productivity. They will also need an operational model for how the equipment is expected to perform and be maintained. With both of those models in hand, the rising cost of reduced productivity can be weighed against downtime for maintenance, allowing the service to be scheduled at the optimal time. Increasingly, digital twins will enable critical decision making at the enterprise level.

The use cases for digital twins in analytics continue to evolve. The latest trends include using real-time machine-learning models to adjust the definition of optimal performance to account for localised operational conditions and using artificial intelligence to predict the most likely failure modes.

Parker is dedicated to delivering actionable insights on the many discrete components and subsystems it sells to customers. As such, it is devoting significant resources to modelling its connected products to enable simpler analytics through product-level insights, which can then aggregate to system, machine and fleet-level solutions. All of this is powered by Parker’s Voice of the Machine platform.

For more information contact Lisa de Beer, Parker Hannifin SA, +27 11 961 0700, [email protected], www.parker.com/za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved