IT in Manufacturing


Ethernet and wireless technologies enable manufacturing Internet of Things

October 2013 IT in Manufacturing

The concept of an ‘Internet of Things’ (IoT) has morphed from its origins in RFID to one that encompasses all networked devices, both within and external to a manufacturing operation. Along with intelligent sensors and machines, IoT encompasses cloud computing, analytics, Big Data, mobility and universal visualisation. Improved business performance, production efficiency and asset optimisation remain the core objectives for manufacturers to implement this technology.

In a manufacturing context, these objectives are achieved by gathering data locally from the myriad of sensors, devices, machines and other entities operating on the plant floor. This data is then made available globally via a cloud or similar infrastructure platform to all sanctioned parties for use in analytics, optimisation and a variety of other applications.

The push to adopt an Internet of Things in manufacturing coincides with a concurrent enabling trend toward use of industrial Ethernet and wireless network technologies within the production environment. These technologies not only offer incremental benefit over dedicated automation solutions in many applications, they also favourably position manufacturers to support the data transfer requirements inherent in IoT.

Ethernet and wireless migrate to the plant floor

Industrial Ethernet networks have sustained a continued downward march in the industrial automation hierarchy. Originally viewed primarily as an IT technology best suited for enterprise-level applications, Ethernet’s potential to provide a single network technology for use in vertical and horizontal integration throughout the enterprise, plus its improved industrial performance, make it increasingly popular. The network is now a staple at the control level of the automation hierarchy, with most suppliers offering an Ethernet-based control backbone. Numerous I/O and device-level products are also available.

Both manufacturing engineers and their IT counterparts now have years of experience with the IEEE 802.11 Wi-Fi wireless standards. Most manufacturers have already established best practices for its usage in their facilities. These COTS-based wireless networks are widely used throughout production operations and the digital oilfield, whether to support mobile devices, in-plant material handling, location tracking, safety, compliance, or multiple other uses.

Manufacturers already recognise the incremental advantages these networks provide compared to dedicated automation networks, particularly for data delivery. Ethernet and wireless both offer bandwidth greater than most dedicated automation networks and largely rely on established standardisation organisations and a large supplier base for continued development. Ethernet in particular has shown its ability to deliver the right data to the right place at the right time, while manufacturers are broadly applying cable-free wireless instrumentation to address business challenges ranging from improved process performance, reliability and efficiency, to conformance with government mandates.

The Internet of Things relies on production data

The enabling infrastructure behind the Internet of Things is composed of intelligent sensors and machines, data delivery networks, and cloud or similar platform computing architectures that support analytics, massive data base management systems and any number of applications. This infrastructure is designed to support the data gathering, analysis, and presentation necessary to improve production efficiency and performance, optimise asset utilisation, ensure safety and compliance and generate incremental gains in these and other areas that were not previously achievable.

A core concept behind the IoT is that minimal potential currently exists for improvements at the device or machine level. Instead, this more holistic approach contends that the potential for more robust improvements that incorporate all the potential variables and elements lies at the system level. IoT also promises to support real-time decision making, rather than the typical reliance on historical data.

One of the further lures behind the IoT concept is the promise to enable new innovations in products, processes and procedures throughout the enterprise. IoT data and analysis can be remotely accessed via PCs, lap-tops, tablets, consoles, handhelds, smartphones, other machines, etc., for both process improvement and sources of innovation. As an extension of this concept, many current and future products and activities will migrate into services offered by both in-house and external providers. This is already true in areas such as machine or fleet maintenance, where external suppliers provide remote services reliant on local data.

Ethernet and wireless adoption will help ‘feed the beast’

One way to view the IoT is as a progression or step-change in integration that provides multi-directional access to a massively collaborative environment, potentially enabling continued improvements in business performance and innovation.

Migration toward the IoT will require manufacturers to continue to mandate compatibility with COTS-based networks when specifying new sensors, machines, or systems. Ethernet and wireless networks will form the bedrock of the IoT architecture and, fortunately, many specifiers are already familiar with their use in production equipment. In general, plant floor sensors, devices, machines and systems will be required to transmit their data to the cloud computing platform for analysis and then be capable of accepting real-time feedback from the analytical engine(s) for performance improvement.

The ability to access production data from within the typically tiered production architecture will be a major consideration. Security of plant floor operation is a major concern when such an integrated, network-dependent concept is raised. Multi-directional access control strategies will be paramount, as will continual monitoring and threat defences. Again, many manufacturers have experience with these issues through their adoption of Ethernet and wireless networks and have security provisions in place. Automation suppliers now offer their own firewalls and other security products and more standards are becoming available in this area. The IEEE 802.1x standard supported in many Ethernet switches, for example, offers port-based network access control.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Quantum computing and its impact on data security: a double-edged sword for the digital age
IT in Manufacturing
Quantum computing is poised to redefine the boundaries of data security, offering groundbreaking solutions while threatening modern encryption’s foundations. For third-party IT providers, this duality presents both a challenge and an opportunity to lead organisations through one of the most significant technological transitions in decades.

Read more...
Next-generation road-legal race car.
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Briggs Automotive Company (BAC) will move to the Siemens Xcelerator portfolio of industry software and use it to develop the next generation of its single-seater road-legal race car, Mono.

Read more...
Cybersecurity at a crossroads
IT in Manufacturing
here’s a growing unease in boardrooms, data centres and cabinet offices across South Africa. It’s not just about economic headwinds or political uncertainty, it’s about something quieter, more technical and yet just as dangerous - the rising tide of cyber threats.

Read more...
Enabling a sustainable industrial organisation
IT in Manufacturing
This article explains the top sustainability trends and key actions that you can leverage to become a more sustainable organisation.

Read more...
Navigating discrete manufacturing in South Africa through digitalisation
IT in Manufacturing
South Africa’s discrete manufacturing sector faces mounting pressure from global competition, fragmented supply chains and outdated infrastructure. In this complex environment, digitalisation is a critical lever for survival, resilience and growth.

Read more...
Africa’s pragmatic approach to AI and how data centres are enabling it
Schneider Electric South Africa IT in Manufacturing
In Africa, the current AI momentum is driven by a fundamental need, building a resilient digital infrastructure that addresses the real-world challenges of the continent’s communities.

Read more...
World first simulation of error-correctable quantum computers
IT in Manufacturing
Quantum computers still face a major hurdle on their pathway to practical use cases, their limited ability to correct the arising computational errors. In a world first, researchers from Chalmers University of Technology in Sweden have unveiled a method for simulating specific types of error-corrected quantum computations.

Read more...
Platform to accelerate supply chain decarbonisation
Schneider Electric South Africa IT in Manufacturing
Schneider Electric has launched Zeigo Hub by Schneider Electric, a powerful new digital platform designed to help organisations decarbonise their supply chains at scale.

Read more...
Future-ready data centres
IT in Manufacturing
The white paper ‘Future-Ready Data Centres’ by Black & Veatch outlines how integrating sustainable design principles not only helps meet ESG goals but also ensures reliability, operational efficiency and business continuity in the face of climate change and growing digital demand.

Read more...
Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved