Electrical Power & Protection


Fire protection for substations

March 2012 Electrical Power & Protection

For industry the need to protect critical processes is crucial to minimise risk exposure that might be catastrophic, take lives and cost a company millions in lost production and recapitalisation. Substations are a key component in many critical processes in mining, providing power to winders, crushers, conveyors, pump stations, etc. Any damage to a substation could result in severe or crippling losses to a mine therefore, fire protection is seen as a valuable requirement in the construction and maintenance of any substation as well as forming a vital thread in the overall fabric of any mining company’s health and safety policy.For industry the need to protect critical processes is crucial to minimise risk exposure that might be catastrophic, take lives and cost a company millions in lost production and recapitalisation. Substations are a key component in many critical processes mining, providing power to winders, crushers, conveyors, pump stations, etc. Any damage to a substation could result in severe or crippling losses to a mine therefore, fire protection is seen as a valuable requirement in the construction and maintenance of any substation as well as forming a vital thread in the overall fabric of any mining company’s health and safety policy.

The principles behind fire protection of an enclosure are to:

* Have an early warning fire detection system.

* Have an effective fire extinguishing system.

* Detect and extinguish any fires.

Limitations of traditional methods

Gaseous extinguishing systems operate in conjunction with a smoke detection and control system. Typically, a smoke detection system will comprise optical and ionisation point smoke detectors located along the ceiling or roof section of a substation. While this will detect smoke, it is less than optimum for fire protection purposes, because it does not adequately meet the need of an early warning smoke detection system in the context of high tension electrical cabinets inside an enclosure. Testing has shown that should a fire occur inside a pressurised IP55 cabinet, the fire would have to be well into its final stage before there is enough smoke emitted to reach the point smoke detectors.

It gets worse when operators consider the temperature inversion due to the effects of the sun on the corrugated iron roofs. Due to the difference in density levels between the air near the roof and the air below it, it requires a lot of smoke for Brownian motion to penetrate this layer and reach the smoke detectors. Heat detectors are not an option either since they will react at a much later stage.

New technology alternatives

For protecting substations, cutting edge technology introduced by Alien Systems & Technologies ensures that all the principles of fire protection are met for cabinet fires that occur indoors, and more particularly, inside the electrical control cabinets within substations. The introduction of Pyrogen aerosol generators expands the choice of fire extinguishing mediums and advances the available detection and actuation methods.

The Pyrogen range of fire extinguishing aerosol generators, from 20 gram to 17 kilogram, has major advantages over gaseous extinguishing systems that use point detection systems. One is the ability to be situated internal to the volume to be protected, ranging from engine compartments in vehicles, aircraft, and marine vessels, to electrical and electronic equipment. The various methods of activation, plus the nature and composition of the post activation residue give the Pyrogen unit the advantage inside the cabinet.

Activation of the Pyrogen units includes electrical, thermal cord and self, and is described more fully below:

* Electrical, from a conventional fire alarm panel.

* Thermal cord attached to the Pyrogen unit, initiation at a pre-set temperature.

* Self-activation in the event that the two previous methods fail.

* The post-activation residue has a 24 kV insulation property, enabling immediate re-use of electrical equipment following replacement of the components which created the fire.

These design and construction features of Pyrogen enhance the normal ‘failure to safety’ required in fire extinguishing systems, resulting in fire detection and extinguishing systems employed in electrical equipment being a fail stage autonomous detection and fire extinguishing system. The system can be configured to require no external power or input fire signals, on standby 24 hours per day, for the 10 years installed life of the Pyrogen unit, all with minimum maintenance.

Advantages of fire detection and extinguishing systems fitted inside the cabinet

Electrical equipment, by requirement, is constructed to minimum IP55 protection ie, gasketed doors, covers and fitments. This precludes the egress of smoke from any fire or electrical fault within any compartment of the switchgear being protected. This is especially true when the substation is ventilated by positive pressure fan systems. The fire would be of major proportions before the smoke detectors in the substation would activate and initiate the release of the fire extinguishing medium. When activated, the substation is flooded with the extinguishing medium having no means of ingress to the switchgear compartment. The result is burn out and destruction of the electrical switchgear panel in which the fire started.

The point smoke detection system, in addition to rigid servicing requirements, is susceptible to extraneous fumes being drawn into the substation by the substation fans resulting in the activation of the gaseous fire extinguishing system. As with a real fire, the system cylinders would have to be dismantled, refilled and re-assembled, during which time the substation is left with no fire extinguishing system.

The in-cabinet Pyrogen system, being impervious to extraneous fumes and smoke, would only activate on an actual fire within the cabinet being protected, thus requiring only one Pyrogen unit replacement, the remainder of the adjacent switchgear being left with full fire protection. Pyrogen aerosol generators localise the fire source and minimise collateral damage.

For more information contact Alien Systems & Technologies, +27 (0)11 949 1157, [email protected], www.astafrica.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

South African businesses can alleviate energy price crisis
Electrical Power & Protection
While grid instability remains a concern, the immediate and most critical driver of South African commercial and industrial investment in renewable energy is the escalating cost of electricity.

Read more...
Real-time modelling is the key to a resilient, bi-directional energy grid
Schneider Electric South Africa Electrical Power & Protection
Utilities and municipalities are facing a challenge as the country’s legacy power grid, engineered for one-way energy delivery from centralised suppliers to end-users, must rapidly evolve to meet a new paradigm.

Read more...
Shielding data centre growth from the looming power crunch
Schneider Electric South Africa Electrical Power & Protection
Today’s digital economy is placing unprecedented strain on the power grid. The good news is that these challenges are not insurmountable. By adopting proactive strategies such as alternative power sources, infrastructure planning and software, operators can secure capacity, build resilient facilities and scale sustainably.

Read more...
Circuit breaker innovations
Schneider Electric South Africa Electrical Power & Protection
Recent advancements in circuit breaker technology have seen a major step forward in setting new standards for efficiency and sustainability in data centres, industrial and commercial infrastructure.

Read more...
Common battery tester errors and what they mean
Comtest Electrical Power & Protection
Battery testers help quickly assess battery health, diagnose issues, and determine whether a battery needs a charge or replacement. This guide covers some of the most common battery tester errors, what they mean, and what can cause them.

Read more...
Cathodic protection design considerations that influence ESG outcomes
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Major infrastructure like wharves, bridges, pipelines and tanks are at constant risk of corrosion. David Celine, managing director of cathodic protection specialist Omniflex, explains how CP system design can support ESG commitments, while simultaneously lowering costs and improving maintenance capabilities.

Read more...
Africa’s digital future – building critical power infrastructure for data centre leadership
Electrical Power & Protection
Africa’s digital economy is growing rapidly, and countries like South Africa, Nigeria and Kenya are leading the way. However, a major challenge remains. Sustainable and reliable power systems must form the backbone of Africa’s digital growth to ensure lasting success.

Read more...
Recovering condensate and waste heat
Electrical Power & Protection
According to Associated Energy Services, strong partnerships with thermal energy users optimise opportunities to benefit from condensate return. waste heat recovery and the prevention of system contamination.

Read more...
Quantum engine powered by particle entanglement
Electrical Power & Protection
In a landmark achievement that signals a new era in energy research, a team of physicists in China has carried out the first successful test of a quantum engine powered by particle entanglement. This technological breakthrough represents a fundamental shift in our approach to energy production.

Read more...
Advancing sustainability in South Africa’s fruit industry
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric, together with Technoserve Medium Voltage, has implemented its advanced SF6-free MV switchgear at Two-a-Day situated in Grabouw in the Overberg district.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved