Electrical Power & Protection


Global outlook for nuclear power generation

November 2011 Electrical Power & Protection

In the wake of the disaster at Tokyo Electric’s Fukushima nuclear complex in Japan, Germany, Switzerland, and Italy have moved away from plans for future use of nuclear power. Despite this, the global outlook for the nuclear power market is pretty much the same, since nuclear new-build is highly concentrated in the ‘BRIC’ countries, which – like South Africa – do not plan to abandon nuclear energy.

The European decisions leave a shortfall in generating capacity that will have to be filled quickly. ARC expects that additional wind capacity will fill this shortfall, along with a new generation of combined cycle plants that have been developed for a grid with a much larger share of renewables. Finally, in closing its own nuclear plants, these countries may end up importing nuclear energy from neighbours that have large and expanding fleets of nuclear plants.

The long-term scenario for North America is similar. While North American nuclear retirements will be further off in time, nuclear power will not be replaced at the same rate as retirements, leaving a shortfall to be filled by renewables and highly efficient, gas-fired combined cycle plants.

In South Africa, Eskom appears to be proceeding with plans to build additional conventional (non-PBMR) nuclear generating capacity, along with new coal-fired plants, new hydro capacity, and other renewables. According to one scenario, by 2030, the country’s generation mix should include 48% coal, 13,4% nuclear, 6,5% hydro, 14,5% other renewables, and 11% peaking gas turbine.

In late May 2011, the German government decided to phase out all operating nuclear power plants by the year 2022. Germany shut down its seven oldest nuclear units after the Fukushima accident. These will not be restarted, nor will one newer plant that was shut down for other reasons. Six other operating units will shut down by 2021 and the remaining units by 2022.

Besides Germany, the Swiss government called for the decommissioning of the country’s five nuclear power units. The recommendation will result in a decision that could see the reactors closed down between 2019 and 2034. Italy, which was in the early stages of a nuclear new build programme, has now shelved this initiative.

Minimal impact on global nuclear market

Given such a rapid retreat from nuclear power in Europe, coupled with uncertainty in the US, what is the impact on the global nuclear market? Not very much, ARC believes. Nuclear construction today is concentrated in China, Russia and India. These three countries account for two-thirds of the 66 nuclear power units now under construction worldwide. While these countries are all reviewing their nuclear regulatory policies, none have even spoken of abandoning their goals for nuclear power.

Looking further out in the future toward plants currently in the planning stages, the geographic mix of new plants is still skewed towards the same three countries. They account for half of the future nuclear market at present. Even if some of the larger developed economies continue with plans for nuclear new build (the US, Japan, UK, and South Africa, for example) the number of future plants they might build is a small fraction of those now being planned by BRIC nations.

What will replace European nuclear power?

Turning from the global market back to Europe, the salient question at present is what types of plant will be built to replace the retiring nuclear generating capacity in Germany and Switzerland? The planning, permitting, construction and commissioning of major power projects can easily span five to 10 years. It is not too soon to ask what will replace a German power plant that will retire in 2022. The total nuclear retirements represent about 25 GW of generating capacity that will need to be replaced. ARC believes that three types of generation are most likely to replace these retiring plants: 1) nuclear (yes, nuclear!), 2) wind, and 3) gas-fired combined cycle.

The decision to shut down nuclear power in Germany and Switzerland might actually end up accelerating carbon-free nuclear development in France. French national utility, EDF, could then export the power to the German and Swiss markets. Traditionally Germany has been an electric power exporter, but this situation has changed since its nuclear shutdown.

The second replacement source, also carbon-free, is additional wind generating capacity. Wind now represents 8% of the European generating capacity, but 17% of German capacity. The nuclear units being retired are mainly in southern Germany and Switzerland, so new German offshore wind capacity is disadvantaged by distance. Nevertheless, more rapid retirement of these nuclear units enhance prospects for new wind capacity.

The third generating technology likely to benefit is gas-fired combined cycle. These plants have now achieved a scale and level of thermal efficiency that makes them more competitive. However, their chief differentiator is that, in addition to efficiency, they can be load cycled rapidly. This makes combined cycle plants an effective complement to both wind generation (which is uncontrolled) and nuclear plants, which are based-loaded.

In conclusion, despite a rapid European retreat from nuclear power, the overall impact on the future of the worldwide nuclear industry will not be significant. What these decisions really do is create a policy direction that provides a context in which suppliers and utilities in Europe can make longer term plans. ARC expects a combination of more renewables and new combined cycle fossil-fired designs to take up the slack, first in Germany and Europe, and later in North America. Due to the country’s ample reserves of coal, South Africa, however, will likely continue to utilise a relatively high percentage of coal-fired generation, albeit as a smaller percentage of its overall energy mix.

For more information contact Paul Miller, ARC Advisory Group, +1 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wireless test tools
Comtest Electrical Power & Protection
Fluke has on offer the Fluke 376 FC True-RMS Clamp Meter with iFlex, the most advanced troubleshooting tool for industrial and commercial electricians

Read more...
Energy measurement module for BL20 I/O System
Turck Banner Southern Africa Electrical Power & Protection
Turck’s BL20 energy measurement module enables precise monitoring of the energy consumption of single- or three-phase systems.

Read more...
Digital energy – getting the foundation right
Schneider Electric South Africa Electrical Power & Protection
Digital energy holds immense promise, particularly in Africa where the both the provision and use of energy must be managed to the finest of degrees to meet the demands of its growing, urban population and resultant industries.

Read more...
The climate change reality in South Africa: An engineer’s call to action
Electrical Power & Protection
This year’s World Engineering Day on 4 March was a powerful reminder of the critical role engineers play in driving progress toward the sustainable development goals.

Read more...
Empowering Africa’s renewable energy future
Electrical Power & Protection
As a global leader in renewable energy technology, SUNGROW has pioneered sustainable power solutions for over 28 years. At the recent Africa Energy Indaba 2025, SUNGROW showcased its advanced energy solutions designed to meet the diverse needs of the African continent.

Read more...
The role of electromechanical solutions in supporting Africa’s industrial growth
Electrical Power & Protection
Africa’s industries are transforming rapidly. Fuelled by a huge demand for energy connectivity, better infrastructure, increased manufacturing and responsible resource management, electromechanical solutions are key to shaping this growth, allowing industries to scale up their operations efficiently and sustainably.

Read more...
Empowering South Africa’s IPPs for a renewable future
Electrical Power & Protection
Many crucial parts of the economy of the future will be hugely energy intensive, foremost amongst which will be electrified transport and the large data processing required by automation and AI. Successful economies will be those that can ensure businesses and investors have access to a stable supply of low-cost renewable energy. South Africa has the opportunity to become a global leader in this regard.

Read more...
Sustainable mining operations escalate as demand for critical materials to double
Electrical Power & Protection
The mining sector is at the forefront of the energy transition due to its role in extracting essential materials and minerals necessary for green technologies. As demand for renewable energy, electric vehicles and other sustainable technologies increases exponentially, so will the demand for these necessary materials.

Read more...
Monitoring partial discharge on medium voltage switchgear
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric South Africa has launched its EcoStruxure Service Plan (ESP) in the Anglophone African region for medium voltage (MV) switchgear

Read more...
Raptor switches
Phoenix Contact Electrical Power & Protection
The Phoenix Contact Raptor switches enable reliable and safe operation in extreme ambient conditions. The managed switch portfolio meets the stringent requirements of IEC 61850-3 and IEEE 1613 standards and is ideal for critical infrastructure and power supply applications.

Read more...