IT in Manufacturing


Productive use of free time

April 2011 IT in Manufacturing

PUFT theory and objective


The primary objective of the PUFT implementation is to improve and optimise operation and machine efficiency on a coupled manufacturing line by making the best use of current assets.

PUFT theory utilises a system’s constraints, over-capacity and acceleration capability, to predict the location and magnitude of free time at workstations. PUFT has evolved from production theories like JIT and Kanban as these are not applicable in a high-speed coupled manufacturing installation with fixed accumulation. Free time is available due to this accumulation and stoppages on the production line.

Coupled manufacturing refers to an installation where machines are connected to each other by conveyors or storage bins. A machine processes product and feeds it into an accumulator from where the next machine on the line fetches, processes and feeds its accumulator. This continues until the product exits the last machine into the warehouse.

PUFT is applicable to any coupled manufacturing production line whether it consists of high-speed machines or the manual assembly of products.

Free time defined

Free time, in the PUFT context, is defined as the time available for a production machine operator to stop his machine without affecting the overall performance of the production line.

Importance of the V-Profile

High-speed production lines are designed such that machine throughput-rates are lowest in the centre and highest at the start and end. This is the V-profile.

The machine at the bottom of the V needs to be kept supplied with product. In a food or beverage line this is where product and empty containers meet. If it stops, production stops. The longer it runs, the more product enters the warehouse. PUFT monitors if the V moves from its designed position and can operate with a dynamic V-profile.

Dynamic free time

Upstream of the V, a machine that keeps its accumulator filled is able to create free time by virtue of the fact that its downstream machine has product to draw on and therefore stay running. Downstream of the V, machines draw product away from the V-machine to ensure it has accumulator space for its product. These create dynamic free time.

Becoming the constraint

Any machine that does not fill or drain the V-machine will become the current bottleneck (CBM) or current constraint machine (CCM). We define the CBM as the machine with the lowest free time on the production line. This is a good indicator that the machine is not performing well. A machine transitions from CBM to CCM when it stops producing. When there is a CCM there is a direct cost to production line efficiency.

The PUFT real-time advantage

Where PUFT has an advantage over traditional methods is that it allows the state of the production line to be monitored, analysed and displayed in real-time at each machine. Existing technology adopts a post-mortem approach. Stoppages are analysed after the fact.

This allows the operator to make decisions based on the current state of the production line. The operator is aware that if his machine is the CBM, stopping it will make it the CCM and impact on line efficiency. Maintenance or cleaning decisions are made based on available free time. These all combine to improve overall line efficiency.

Static free time

When a machine stops due to operator intervention, emergency stop or breakdown, PUFT prompts the operator for the expected downtime. This is static (breakdown) free time. Free time at any machine is the sum of its dynamic and static free times.

When static downtime is entered, it is propagated to all other machines on the production line. Since the breakdown machine is expected to be stopped for the given time, all machines benefit. PUFT monitors MTBF and MTTR and can use this to broadcast estimated downtime without operator intervention.

Free time is an advanced warning

PUFT predicts free time in four different line states: Sleep, Start-Up, Running and Run-Out. Many production lines do not have line-of-sight communication between machines. When the line has emptied of product for example, ie, Run-Out and gone to a Sleep state, each operator has an indicator showing when product is expected to arrive when it restarts. Depending on the line configuration, this could be an hour or more from the first machine starting to run, to product arriving at the last. Operators can use this time more effectively than if they had inaccurate or no knowledge of the state of the production line.

PUFT equipment and installation

PUFT equipment at each point-of-interest consists of a Heartbeat device which gathers all sensor signals and a Predictor which displays free time to the operator. The line manager has the option of a Globe device which gathers data from the Predictors and displays a summary of the current state of the line. The Globe has an Ethernet connection and serves up Web-pages to any desktop PC browser.

Installation of the PUFT system is simple and non-invasive. Each point requires power and sensors to count product entering and leaving the machine. Communication between Predictors uses proprietary wireless adapted for industrial environments.

Additional features

Predefined messages may be broadcast to other Predictors and Globe and by SMS to pre-programmed phone-numbers. Data for each machine is stored continuously, eg, 121 days at 5 minute intervals and retrieved via USB. Line Configurations may be changed by uploading a parameter file generated from a spreadsheet allowing product changes with varying pack sizes to be set up quickly. Simulation Mode provides a sophisticated mechanism to model a line and experiment with changes before deployment into the field.

For more information contact Dale Whitfield, PUFT Group, +27 (0)21 788 5838, [email protected], www.puft.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Optimising the product design process
Siemens South Africa IT in Manufacturing
OPmobility is partnering with Siemens to adopt its Teamcenter X Product Lifecycle Management software. OPmobility’s increasingly complex products now include electronics and software, to create energy storage systems, which include battery and hydrogen electrification solutions and fuel tanks.

Read more...
Smart milling for resilient, sustainable food production
IT in Manufacturing
As the global demand for food continues to rise due to increasing urbanisation, the milling industry faces the challenge of balancing efficiency with sustainability. Bühler is committed to making milling more energy-efficient while maintaining high operational performance. Its solutions allow mills to reduce energy costs and ensure long-term sustainability.

Read more...
The evolving landscape of data centres in the age of AI
Schneider Electric South Africa IT in Manufacturing
The data centre industry is undergoing a period of rapid transformation, driven primarily by the explosive growth of AI. It’s clear that the demands of AI are reshaping the very foundations of data infrastructure. This isn’t merely about incremental upgrades; it’s a fundamental shift in how we design, power and operate these critical facilities.

Read more...
SA Food Review
IT in Manufacturing
Food Review is a monthly trade journal for South Africa’s food and beverage manufacturing industry, for industry professionals seeking detailed information on trends, technologies, best practices and innovations.

Read more...
Keeping an eye on oil consumption with moneo
ifm - South Africa IT in Manufacturing
Manufacturing companies in the metal industry need oils and other fluids that are consumed by their machines. To make this consumption transparent and to establish a link to the ERP system, Arnold Umformtechnik relies on the IIoT platform, moneo, in combination with the SAP-based software solution Shop Floor Integration (SFI) – both from ifm.

Read more...
AI accelerates energy transformation
RJ Connect IT in Manufacturing
With the rapid expansion of generative AI applications, data centre power demand is reaching unprecedented levels.

Read more...
Revolutionising mining operations with MineOptimize
IT in Manufacturing
Now more than ever, mining and mineral processing companies need to boost productivity, ensure safety, and protect the environment. ABB’s comprehensive electrification, automation and digital solutions portfolio is ideally positioned to meet these challenges across all mining processes, from mine to port, transforming performance in a digital world.

Read more...
Buildings in Africa’s urban evolution
Schneider Electric South Africa IT in Manufacturing
Africa is now an urban continent. How does the continent mobilise to accommodate urban dwellers and maintain and implement critical infrastructure that allows for this expansion? Building management systems provide a tangible solution to optimise resource use, lower operations costs and ultimately contribute to a growing continent that also employs green practices.

Read more...
TwinCAT Vision functionality extended
Beckhoff Automation IT in Manufacturing
The image processing and camera integration capabilities of Beckhoff’s TwinCAT 3 Vision software have been expanded.

Read more...
Automation software to future-proof your operations
Adroit Technologies IT in Manufacturing
As the official partner of Mitsubishi Electric Factory Automation, Adroit Technologies empowers businesses with cutting-edge solutions that reduce costs, improve quality and increase productivity.

Read more...