Electrical Power & Protection


Eliminating batteries for wireless adoption

February 2011 Electrical Power & Protection

Many end users will continue to resist adopting wireless sensing for process measurements or condition monitoring as long as these sensors require battery power and eventual battery replacement. While suppliers have improved battery life in recent years, powering wireless sensors via energy harvesting is a potential game changer in both industrial and building automation applications.

Wireless process measurement products have achieved significant reductions in power consumption, and hence longer battery life. Industrial standards now dictate monitoring of battery health. Suppliers have also made system-level improvements. For example, Dust Networks uses battery life as a factor in optimising WirelessHART route selection. Honeywell explains that its opposition to using field devices as wireless routers is aimed at helping provide certainty about battery life. But despite improvements, users have been slow to deploy battery-powered field sensors widely, seeing large numbers of field-mounted batteries as a source of maintenance cost and operational risk.

Can getting rid of batteries propel wireless measurement to ‘cross the chasm’ toward widespread use? Suppliers and venture-stage firms alike now seek to develop devices with integral power supplies that have the same life expectancy as the devices themselves. Rather than batteries, the ideal power supply would be capable of ‘energy harvesting’ to provide energy over an indefinite period. The challenging aspect of this for suppliers is that currently no single energy harvesting technology dominates. Rather, suppliers must wrestle with several types of energy harvesting, most of which are very new. Three energy-harvesting technologies now lead the industrial space.

Photovoltaic

The most established and widely deployed technology has been photovoltaic (PV). However, PV solutions tend not to power individual devices but rather recharge larger batteries that support small field systems in remote locations. In the earliest days of wireless field devices, suppliers showed (but did not commercialise) conceptual designs of field transmitters incorporating PV. Embedding PV at the device level reduces device ruggedness, since the PV components can be destroyed or damaged during installation or operation. Another liability of device-integrated PV is that measurement locations vary widely in the amount of ambient light available and not all have enough to support a device indefinitely. So while widely deployed, PV is used as a separate sub-system rather than an integral part of field measurement devices.

Vibration

A second source of ambient energy for harvesting is vibration. Vibrations from rotating or other equipment can be converted into electric power by either piezoelectric or permanent magnet generators (PMG). Piezoelectric has been used in building automation applications, but under continuous vibration/deflection, long operating life has been a challenge. PMGs, on the other hand, have been commercialised (unsurprisingly) in vibration-sensing applications. Venture firm, Perpetuum, commercialised PMGs with ATEX Zone 0 and CSA certification. GE Bently Nevada, a global market share leader in condition monitoring, offered wireless vibration sensing using PMGs beginning in 2008.

PMGs offer the advantages of indefinite life and scalability to provide dedicated sensor power. However, the units are relatively heavy and bulky. This is not an issue in most equipment condition monitoring applications, especially when compared with the cost of new field sensor wiring. The sensors can operate with PMGs paired with ‘super-cap’ capacitors for a measurement that is entirely free of batteries. This aspect proved attractive to Shell, an end user that had shown strong resistance to large-scale battery deployment.

Thermoelectric generation

The third and newest energy harvesting technology is thermoelectric generation. Thermoelectric technology uses essentially the same phenomenon as common thermocouples. However, instead of being optimised to create a voltage that is a measure of temperature difference, thermoelectric devices are optimised to use a temperature difference to create electric voltage.

A thermoelectric produces electrical power from heat flow across a temperature gradient. As the heat flows from hot to cold, free charge carriers in the material are also driven to the cold end. This causes a voltage proportional to the temperature difference. By connecting an electron conducting (n-type) and hole conducting (p-type) material in series, a net voltage is produced that can be applied to a load. To achieve a useful voltage, many thermoelectric couples must be connected in series within the device.

In theory, a thermoelectric could power a wireless temperature sensor indefinitely as long as there was a sufficient temperature difference between the measurement point and the ambient temperature. In practice, there are challenges. The device requires a significant heatsink to maintain the thermal gradient. The thermo generator must be packaged in an industrial device without compromising the ruggedness of the device.

In 2010, ABB made significant progress toward commercial products in this area. Working in partnership with German venture firm, Micropelt, ABB showed an R&D prototype at Hannover Fair and, later in the year, showed a prototype thermoelectric wireless temperature transmitter at its Automation and Power World user event. ABB stated that the device would operate with a minimum temperature difference of 30°C. Maintaining this temperature gradient across the device results in a longer device package, but also enables the transmitter to power itself indefinitely. ABB hinted that it has paired the thermoelectrics with a super-capacitor, but has been entirely silent about when (and if) the device will be commercialised.

No magic bullet in sight

Energy harvesters powering wireless field measurement is a compelling vision. But no magic bullet is in sight. No single energy harvesting technology can serve all industrial applications. Rather, each seems to work well within a certain application domain. It also seems that incorporating energy harvesting with sensing adds another dimension to the challenges of device design. However, the prospect of battery-free wireless sensing is so attractive that suppliers are investing and making progress in this area.

For more information contact Larry O’Brien, ARC Advisory Group, (+1) 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Setting new standards in dry-type transformer technology
Electrical Power & Protection
Dry-type transformer technology is gaining ground globally, and leading the charge in Africa is Trafo Power Solutions, in partnership with Italian manufacturer, TMC Transformers.

Read more...
Advanced process control for the IRP
Schneider Electric South Africa Electrical Power & Protection
One of the main challenges in implementing South Africa’s Integrated Resource Plan is ensuring grid stability while integrating renewable energy sources and balancing fluctuating energy demands. Advanced process control can play an important role.

Read more...
Revolutionising fault location and maximising solar production
Comtest Electrical Power & Protection
Comtest has on offer the Fluke GFL-1500 solar ground fault locator, a frontline troubleshooting tool that helps technicians pinpoint active ground faults in solar photovoltaic systems.

Read more...
Supporting the AI boom with power architecture
Electrical Power & Protection
Hitachi Energy is supporting the 800 VDC power architecture announced by Nvidia, by developing a cleaner, more efficient way to power the next generation of AI infrastructure.

Read more...
Kyocera releases new stacked capacitors
Electrical Power & Protection
Kyocera AVX has released the new KGP Series commercial-grade stacked capacitors for high-frequency applications in the industrial and downhole oil and gas industries.

Read more...
More sustainable tyres
Electrical Power & Protection
Continental is prioritising the use of renewable and recycled materials in its tyre production

Read more...
World’s first hydrogen-powered driverless tractor
Electrical Power & Protection
Kubota has unveiled the world’s first hydrogen fuel cell tractor with a self-driving function.

Read more...
ABB drives rail modernisation and EV growth in South Africa
Electrical Power & Protection
ABB’s work in Africa in low- and medium-voltage infrastructure, safety-critical components and electrification puts it at the heart of accomplishing the Southern African Railways Association’s strategy.

Read more...
Revolutionising electrical infrastructure through digital innovation
Schneider Electric South Africa Electrical Power & Protection
In today’s rapidly evolving industrial and commercial landscapes, the integrity of electrical infrastructure has become a non-negotiable priority.

Read more...
Hitachi Energy’s power quality solution
Electrical Power & Protection
Hitachi Energy has announced the deployment of its power quality solution to connect Tanzania’s leading gold producer, Geita Gold Mine (GGML) securely to the national grid.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved