Electrical Power & Protection


Eliminating batteries for wireless adoption

February 2011 Electrical Power & Protection

Many end users will continue to resist adopting wireless sensing for process measurements or condition monitoring as long as these sensors require battery power and eventual battery replacement. While suppliers have improved battery life in recent years, powering wireless sensors via energy harvesting is a potential game changer in both industrial and building automation applications.

Wireless process measurement products have achieved significant reductions in power consumption, and hence longer battery life. Industrial standards now dictate monitoring of battery health. Suppliers have also made system-level improvements. For example, Dust Networks uses battery life as a factor in optimising WirelessHART route selection. Honeywell explains that its opposition to using field devices as wireless routers is aimed at helping provide certainty about battery life. But despite improvements, users have been slow to deploy battery-powered field sensors widely, seeing large numbers of field-mounted batteries as a source of maintenance cost and operational risk.

Can getting rid of batteries propel wireless measurement to ‘cross the chasm’ toward widespread use? Suppliers and venture-stage firms alike now seek to develop devices with integral power supplies that have the same life expectancy as the devices themselves. Rather than batteries, the ideal power supply would be capable of ‘energy harvesting’ to provide energy over an indefinite period. The challenging aspect of this for suppliers is that currently no single energy harvesting technology dominates. Rather, suppliers must wrestle with several types of energy harvesting, most of which are very new. Three energy-harvesting technologies now lead the industrial space.

Photovoltaic

The most established and widely deployed technology has been photovoltaic (PV). However, PV solutions tend not to power individual devices but rather recharge larger batteries that support small field systems in remote locations. In the earliest days of wireless field devices, suppliers showed (but did not commercialise) conceptual designs of field transmitters incorporating PV. Embedding PV at the device level reduces device ruggedness, since the PV components can be destroyed or damaged during installation or operation. Another liability of device-integrated PV is that measurement locations vary widely in the amount of ambient light available and not all have enough to support a device indefinitely. So while widely deployed, PV is used as a separate sub-system rather than an integral part of field measurement devices.

Vibration

A second source of ambient energy for harvesting is vibration. Vibrations from rotating or other equipment can be converted into electric power by either piezoelectric or permanent magnet generators (PMG). Piezoelectric has been used in building automation applications, but under continuous vibration/deflection, long operating life has been a challenge. PMGs, on the other hand, have been commercialised (unsurprisingly) in vibration-sensing applications. Venture firm, Perpetuum, commercialised PMGs with ATEX Zone 0 and CSA certification. GE Bently Nevada, a global market share leader in condition monitoring, offered wireless vibration sensing using PMGs beginning in 2008.

PMGs offer the advantages of indefinite life and scalability to provide dedicated sensor power. However, the units are relatively heavy and bulky. This is not an issue in most equipment condition monitoring applications, especially when compared with the cost of new field sensor wiring. The sensors can operate with PMGs paired with ‘super-cap’ capacitors for a measurement that is entirely free of batteries. This aspect proved attractive to Shell, an end user that had shown strong resistance to large-scale battery deployment.

Thermoelectric generation

The third and newest energy harvesting technology is thermoelectric generation. Thermoelectric technology uses essentially the same phenomenon as common thermocouples. However, instead of being optimised to create a voltage that is a measure of temperature difference, thermoelectric devices are optimised to use a temperature difference to create electric voltage.

A thermoelectric produces electrical power from heat flow across a temperature gradient. As the heat flows from hot to cold, free charge carriers in the material are also driven to the cold end. This causes a voltage proportional to the temperature difference. By connecting an electron conducting (n-type) and hole conducting (p-type) material in series, a net voltage is produced that can be applied to a load. To achieve a useful voltage, many thermoelectric couples must be connected in series within the device.

In theory, a thermoelectric could power a wireless temperature sensor indefinitely as long as there was a sufficient temperature difference between the measurement point and the ambient temperature. In practice, there are challenges. The device requires a significant heatsink to maintain the thermal gradient. The thermo generator must be packaged in an industrial device without compromising the ruggedness of the device.

In 2010, ABB made significant progress toward commercial products in this area. Working in partnership with German venture firm, Micropelt, ABB showed an R&D prototype at Hannover Fair and, later in the year, showed a prototype thermoelectric wireless temperature transmitter at its Automation and Power World user event. ABB stated that the device would operate with a minimum temperature difference of 30°C. Maintaining this temperature gradient across the device results in a longer device package, but also enables the transmitter to power itself indefinitely. ABB hinted that it has paired the thermoelectrics with a super-capacitor, but has been entirely silent about when (and if) the device will be commercialised.

No magic bullet in sight

Energy harvesters powering wireless field measurement is a compelling vision. But no magic bullet is in sight. No single energy harvesting technology can serve all industrial applications. Rather, each seems to work well within a certain application domain. It also seems that incorporating energy harvesting with sensing adds another dimension to the challenges of device design. However, the prospect of battery-free wireless sensing is so attractive that suppliers are investing and making progress in this area.

For more information contact Larry O’Brien, ARC Advisory Group, (+1) 781 471 1126, [email protected], www.arcweb.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Hitachi Energy’s power quality solution
Electrical Power & Protection
Hitachi Energy has announced the deployment of its power quality solution to connect Tanzania’s leading gold producer, Geita Gold Mine (GGML) securely to the national grid.

Read more...
Rail electrification and EV solutions for integrated transport systems
Electrical Power & Protection
A comprehensive range of solutions for rail electrification and electric vehicles is available from leading technology provider ABB, contributing significantly to integrated and sustainable transport systems.

Read more...
PPS delivers containerised distribution board for Western Cape hybrid power project
Electrical Power & Protection
South African electrical enclosure specialist Power Process Systems has successfully completed the design, fabrication and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project on a site in the Western Cape.

Read more...
The choice of a thermal carrier is critical for optimal processing
Electrical Power & Protection
Historically steam, fuelled by coal, has been the most prevalent thermal carrier in South African industry. However, times are changing, with the manufacturing and processing sector needing to review the energy reticulation systems and thermal carriers currently in use.

Read more...
ABB’s blueprint for a net zero future
Electrical Power & Protection
ABB’s Mission to Zero is a strategic initiative aimed at achieving a sustainable future characterised by zero emissions, zero accidents and zero waste.

Read more...
How South Africa’s transformer manufacturing industry can fill a gaping infrastructure gap
ACTOM Electrical Machines Electrical Power & Protection
South Africa’s energy transition is accelerating the demand for power transformers. However, this shift toward renewable energy is exposing a critical infrastructure gap: a severe shortage of transformers.

Read more...
General-purpose 350 W AC-DC power supply
Electrical Power & Protection
The TDK-Lambda GUS350 series of compact single-output general-purpose power supplies addresses the need for an economically priced product while maintaining reliability and quality.

Read more...
Ground-breaking battery tester
Comtest Electrical Power & Protection
Midtronics offers the proven MVT handheld battery tester. This revolutionary tool, powered by MDX-AI, is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Green hydrogen could be the missing link in powering the future of technology
Electrical Power & Protection
Green hydrogen has numerous applications across multiple industries. It also has the potential to provide a clean energy source to power future technology, with far-reaching implications for both industry and society.

Read more...
Energy audits pave the pathway to sustainability and savings
Schneider Electric South Africa Electrical Power & Protection
Energy audits serve as essential tools for businesses looking to reduce costs and meet environmental targets. By analysing energy consumption across systems such as lighting, HVAC, ICT and water infrastructure, audits identify inefficiencies and quantify carbon footprints, enabling data-driven decisions for operational and financial optimisation.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved