IT in Manufacturing


What is 'IT in manufacturing' about? Part 4 - Manufacturing execution systems: the hub of IT in manufacturing

April 2010 IT in Manufacturing

In Part 3, we saw how the differences between business IT and shop floor IT can be reconciled. In the middle of this reconciliation lie manufacturing execution systems (MES), the link between the shop floor and the top floor and really the very heart of IT in manufacturing. As such, MES includes a wide range of applications that is often daunting at first glance and even more overwhelming after careful scrutiny. Yet, these are functions that every manufacturing company performs on a daily basis because there is no way of doing business without them. Because of this complexity, it is no wonder that many companies regard the automation of their MES processes with more than a little apprehension. But this need not be so.

About MES

Firstly, what is MES? The MESA International definition published in 1997 states:

* Manufacturing Execution Systems deliver information that enables the optimisation of production activities from order launch to finished goods.

* Using current and accurate data, MES guides, initiates, responds to and reports on plant activities as they occur.

* The resulting rapid response to changing conditions, coupled with a focus on reducing non value-added activities, drives effective plant operations and processes.

* MES improves the return on operational assets as well as on-time delivery, inventory turnarounds, gross margin and cash flow performance.

* MES provides mission-critical information about production activities across the enterprise and supply chain via bi-directional communications.

Today there are many vendors that sell MES solutions, either packaged or in the form of a toolbox. But the variety of applications coupled with the specific, individual and changing needs of each and every manufacturing company, means that a single, shrink-wrapped package that is all things to all companies is unrealistic. With MES, one size definitely does not fit all companies.

Manufacturers have started to adopt and adapt MES solutions as and when they need them, but MES needs access to shop floor historians at one end of the information spectrum and ERP databases at the other. This means having to work with disparate solutions from a wide variety of vendors. What is needed is a standard that provides a guideline for communication between business and operational systems so that end-users can choose the solutions that best suit their needs and that allow for customisation.

Figure 6: Categories of information exchange in a manufacturing company
Figure 6: Categories of information exchange in a manufacturing company

The ISA-95 standard

This standard was developed with the objective of providing standard terminology and object models for information exchange. B2MML (Business To Manufacturing Markup Language) is an XML (Extensible Markup Language) implementation of the ISA-95 standard by the World Batch Forum (WBF). B2MML has been adopted by players such as SAP and Wonderware and is a defined schema with the objective of reducing the cost, risk and errors associated with implementing interfaces between enterprise and production control systems. ISA-95 does not prescribe solutions. It simply creates an environment for collaboration not only between MES applications but also between the automation, MES and ERP layers.

Figure 7: The multilevel hierarchy of activities in a manufacturing company
Figure 7: The multilevel hierarchy of activities in a manufacturing company

Implementing MES

The first question to ask is: “What is the driving need for MES in the business?” Answering this requires a good knowledge of how the business currently runs and where improvements can be made through the deployment of technology. Surprisingly, in many cases the low-lying fruit can be reached without complex solutions and huge IT spending. This will, however, depend on what systems are already in place.

Like any structure the complexity and success of MES often depends on the foundation that it is built on. This foundation can, for example, include IP investment as well as an accurate requirements specification and a business value proposition. The foundation must also include the technology framework that is in place both in the office and on the shop floor and an accurate estimate of the total cost of ownership (TCO) of an MES.

Today, there are more than a few examples, in the South African manufacturing landscape, of companies who embraced MES wholeheartedly only to find themselves stranded a year or two down the road because of unforeseen costs, delays and the inability of the systems to keep up with their changing needs.One end-user commented that, unlike with process automation systems, the definition of MES functionality is somewhat vague and it’s only after one has got it up and running that one realises what should be in place – but by then, of course, it is too late. One could spend an inordinate amount of time and money defining MES workflows only to have them change six months later. Even the act of automating MES functionality makes one think about other possibilities which inevitably result in specification changes. A more rational approach that would probably halve implementation time and cost is to implement MES bit by bit by making conscious technology investments aimed at achieving medium term business benefits.

Figure 8 shows three types of approaches to projects. Project ‘Red’ (bottom of the chart), took so long in its implementation that scrapping it is the nearest its owner will get to a decent ROI.

Figure 8: An incremental approach to MES solution implementation
Figure 8: An incremental approach to MES solution implementation

Project ‘Blue’ took a significant time to develop and yielded proportionately significant results. However, much of its functionality was lost because it was developed to conform to specifications that have since changed.

Project ‘Green’, along with its companions, took very little time to define and complete, yielding proportional functionality and ROI. It involved little risk, could be redefined and redone if necessary and was exactly what the enterprise needed at that time.

Conclusion

What is needed for the successful implementation of MES today is an approach which:

* Allows users to build applications that solve today’s problems.

* Is adaptable to change as the company’s operational requirements evolve.

* Allows applications to be developed in a managed fashion providing for reuse of engineering effort and low TCO.

* Partners with solution suppliers that have a strong 5-10 year strategy based on leading technology, standards and user requirement trends (eg, infrastructure development, SOA, etc).

* Does not negatively impact on the performance of the business (or state-of-mind of the staff).

* Recognises the maturity differences in the infrastructure components of the organisation.

* Leverages existing IT investments – why use proprietary reporting or specialist historians that do not make use of Microsoft MS SQL or other pervasive database technologies?

The ideal MES implementation allows the company to purchase solutions and grow as required, delivers immediate business value and ROI and allows users to roll out solutions that address defined strategies. An MES implementation is most successful when it is done within a company infrastructure whose principal components are at the same level of maturity.

Today there is much talk about the next level of integration through a unified service oriented architecture (SOA). SOA is an infrastructure for plug-in business functions such as HR, production management, etc. SOA highlights the trend for modern companies to adopt a more unified approach to operations. It is not a coincidence that Wonderware already has such an infrastructure for the process automation environment – ArchestrA.

For more information contact Deon van Aardt, Wonderware Southern Africa, 0861 WONDER, [email protected], www.wonderware.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Optimising the product design process
Siemens South Africa IT in Manufacturing
OPmobility is partnering with Siemens to adopt its Teamcenter X Product Lifecycle Management software. OPmobility’s increasingly complex products now include electronics and software, to create energy storage systems, which include battery and hydrogen electrification solutions and fuel tanks.

Read more...
Smart milling for resilient, sustainable food production
IT in Manufacturing
As the global demand for food continues to rise due to increasing urbanisation, the milling industry faces the challenge of balancing efficiency with sustainability. Bühler is committed to making milling more energy-efficient while maintaining high operational performance. Its solutions allow mills to reduce energy costs and ensure long-term sustainability.

Read more...
The evolving landscape of data centres in the age of AI
Schneider Electric South Africa IT in Manufacturing
The data centre industry is undergoing a period of rapid transformation, driven primarily by the explosive growth of AI. It’s clear that the demands of AI are reshaping the very foundations of data infrastructure. This isn’t merely about incremental upgrades; it’s a fundamental shift in how we design, power and operate these critical facilities.

Read more...
SA Food Review
IT in Manufacturing
Food Review is a monthly trade journal for South Africa’s food and beverage manufacturing industry, for industry professionals seeking detailed information on trends, technologies, best practices and innovations.

Read more...
Keeping an eye on oil consumption with moneo
ifm - South Africa IT in Manufacturing
Manufacturing companies in the metal industry need oils and other fluids that are consumed by their machines. To make this consumption transparent and to establish a link to the ERP system, Arnold Umformtechnik relies on the IIoT platform, moneo, in combination with the SAP-based software solution Shop Floor Integration (SFI) – both from ifm.

Read more...
AI accelerates energy transformation
RJ Connect IT in Manufacturing
With the rapid expansion of generative AI applications, data centre power demand is reaching unprecedented levels.

Read more...
Revolutionising mining operations with MineOptimize
IT in Manufacturing
Now more than ever, mining and mineral processing companies need to boost productivity, ensure safety, and protect the environment. ABB’s comprehensive electrification, automation and digital solutions portfolio is ideally positioned to meet these challenges across all mining processes, from mine to port, transforming performance in a digital world.

Read more...
Buildings in Africa’s urban evolution
Schneider Electric South Africa IT in Manufacturing
Africa is now an urban continent. How does the continent mobilise to accommodate urban dwellers and maintain and implement critical infrastructure that allows for this expansion? Building management systems provide a tangible solution to optimise resource use, lower operations costs and ultimately contribute to a growing continent that also employs green practices.

Read more...
TwinCAT Vision functionality extended
Beckhoff Automation IT in Manufacturing
The image processing and camera integration capabilities of Beckhoff’s TwinCAT 3 Vision software have been expanded.

Read more...
Automation software to future-proof your operations
Adroit Technologies IT in Manufacturing
As the official partner of Mitsubishi Electric Factory Automation, Adroit Technologies empowers businesses with cutting-edge solutions that reduce costs, improve quality and increase productivity.

Read more...