Electrical Power & Protection


Locating battery ground faults without sectionalising

November 2000 Electrical Power & Protection

Power surgers and lightning can cause power outages. The back-up systems that can take over and keep power available need to be in good order. Here is something relatively new in the maintenance and repair of battery back-up systems.

The main objective of a battery system is to provide standby and emergency power to operate industrial, consumer, commercial or protective devices connected to it. These devices include emergency lighting, uninterruptible power supplies, continuous process systems, operating controls, switchgear components and protective relays. It is essential that these devices are in proper operating condition in emergency situations because failure of a battery system can result in operational failure of the devices.

It often happens that a battery system develops grounds within the system. When both the positive and negative terminals are partially or completely grounded, a short circuit is formed across the battery. This can cause the protective device to fail to operate when needed.

Current test methods

Although utilities and industrial complexes have gone to great lengths to find grounds within their battery systems, locating these battery grounds proves very elusive and time-consuming. The current ground-fault location method involves sectionalising or interruption of DC branches to isolate the ground fault. Unfortunately sectionalising disables the system protection and has been known to cause inadvertent line and generator tripping. Therefore, many utilities have banned sectionalising.

Measuring resistance to ground for entire negative bus (position A) and the resistance to ground contributed by one circuit - without disconnecting anything
Measuring resistance to ground for entire negative bus (position A) and the resistance to ground contributed by one circuit - without disconnecting anything

New test method

Recently a new test method was developed. The AC injection method measures fault resistance in the battery system without sectionalising the DC system. By reducing the fault-locating time from days to hours the system is protected at all times.

The AC injection method measures single or multiple ground faults by injecting a low-frequency AC voltage between the station ground and the battery system. The resulting current is then measured by using a clamp-on sensing current transformer. The resistance value can also be calculated using the in-phase component of the circulating current, thus rejecting the effect of capacitive loads.

Therefore, if the signal is injected at the battery terminal and the clamp-on CT is connected to the outgoing lead, the instrument will measure the total ground resistance present on the battery system. If the CT is clamped on a feeder, then the instrument will measure the ground resistance on that feeder.

After injection of a low-frequency AC waveform, a resistive fault on a branch of the battery system will be indicated by a low-resistance value. For example, if the total resistance on a battery system showed 10 kW, this would indicate a resistive fault on the battery system. The resistive fault can be located by clamping onto each individual circuit, looking for one exhibiting a resistance value of 10 kW is found.

This method can be adapted easily to the location of multiple faults by using the theory of parallel paths. For example, if the total system resistance indicates 100 W and an individual branch indicates 10 kW resistive fault, the user would know that the system has a second fault because the total system resistance and the branch resistance do not match.

AVO's multi-amp, battery ground fault locator

The technician can simplify his life by investing in AVO International's multi-amp battery ground fault locator. It is lightweight and portable, reads directly in resistance and can operate on live battery systems. Its resistance range is from 1 W to 100 kW and it works on battery systems up to 260 V nominal with a maximum ripple current of 0,5 A a.c. and maximum DC bias current of 20 A.

The battery ground fault locator is user-friendly and virtually anyone can be trained to use the instrument. The unit can substantially reduce the amount of time needed to locate battery ground faults.

Spescom MeasureGraph, a subsidiary of JSE-listed Spescom Limited and a leading supplier of test and measurement equipment, is the sole local distributor of the AVO range of products.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Waste To Energy thermal technologies
DirectLogic Automation Electrical Power & Protection
The vast quantities of waste produced around the world are a large and growing problem. Waste to Energy technology based on pyrolysis is a solution.

Read more...
New enhanced Breaker Status and Communication Module
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new Breaker Status and Communication Module (BSCM) Modbus SL/ULP, which delivers enhanced performance, improved connectivity and simplified integration for power distribution systems.

Read more...
Building green industries to scale green economies
Electrical Power & Protection
Africa is taking bold steps to build green industries across the continent. Namibia is a trailblazer in the hydrogen space, with up to five Final Investment Decisions scheduled to be made in 2025/2026 and is pioneering a world first for green industrialisation.

Read more...
Easing the path for IPPs navigating South Africa’s energy regulations
Electrical Power & Protection
Independent Power Producers and developers venturing into South Africa’s renewable energy sector face a challenging regulatory landscape. SPS is a renewable energy asset management company that is actively expanding into the energy trading and wheeling market, which will enable businesses to buy and sell energy directly

Read more...
How energy storage will make or break SA’s renewable transition
Electrical Power & Protection
Energy storage is no longer an add-on, but the foundation of a reliable, resilient and renewable energy system. As South Africa accelerates towards a greener future, storage innovation could determine the difference between progress and paralysis.

Read more...
Condition-based maintenance can revolutionise business continuity
Schneider Electric South Africa Electrical Power & Protection
As businesses experience growing pressure to enhance operational efficiency and reduce downtime due to electrical failure, condition-based maintenance becomes essential for preventing unforeseen equipment breakdowns by assessing the real-time health of electrical systems.

Read more...
Boiler selection for optimal thermal energy performance
Electrical Power & Protection
The changing world of boilers means companies wishing to improve their thermal energy efficiencies while containing costs and environmental impacts must make careful and informed decisions. AES’s rich pool of experience, ability to keep pace with new steam trends and technologies, and understanding of their clients’ production processes can assist clients to weigh up different options in a careful and informed manner.

Read more...
Securing Africa’s energy future starts at home
ACTOM Electrical Machines Electrical Power & Protection
Africa’s energy demands are surging, but the current reliance on imported solar technology leaves the continent vulnerable. This is why the prospect of building inverters and lithium batteries locally, designed for South Africa’s specific needs, is so promising.

Read more...
Dry-type transformers for Dutch intake substation
Electrical Power & Protection
A data centre in the Netherlands is the site of a recent innovation on the transformer landscape, where TMC Transformers has designed, manufactured and installed dry-type transformers in a large intake substation.

Read more...
Generators: The muscle in the new energy mix
WEG Africa Electrical Power & Protection
Contrary to their reputation as noisy and dirty, generators are a key part of modern energy supplies. Generators are reliable electricity workhorses in times of need. But they are also becoming welcome additions to modern energy mixes through efficiency improvements, noise reduction and flexible design choices.

Read more...