Analytical Instrumentation & Environmental Monitoring


A guide to cableless scada communication

March 2000 Analytical Instrumentation & Environmental Monitoring

It will come as no surprise to the systems design engineer that the cost of installing process signal cables in scada systems can be a major portion of the total project cost. The 'connectivity' of modern radio data products means that it has never been easier to utilise this time and time saving technology. Indeed, many telemetry systems are in use today where radio is the primary communication medium.

The use of radio links in relation to scada systems falls into two categories:

* Radio modems communicating between proprietary I/O systems of PLCs that would otherwise use cable.

* Standalone radio telemetry with their own I/O.

Radio modems

Radio modems are most often used in a "broadcast mode". This mode of operation can be likened to a multidrop cable. Any unit in radio range (subject to security measures) will ‘hear’ the messages and output them on their serial ports. The messages contain destination information and it is up to the device connected to the modem to recognise its own messages and respond. Since most systems operate on a single RF channel, half duplex communication is the norm. This is achieved by the host system operating a polling regime, thus avoiding data clashes on the radio channel.

Most systems of this kind operate on the deregulated UHF telemetry band, which imposes bandwidth and hence speed limitations. Purchasers should ensure that data rates quoted are ‘over the air’ and not merely interface rates. The latest products available support approximately 8 kbaud over the air data rate which approaches 4,8 kbaud data throughout when forward error correction (FEC) is applied, (at 12,5 kHz channel spacing).

As important as transmission rate is "turnaround time". This is a fixed overhead delay that takes place every time the modem changes from transmit to receive. The purchaser should seek the shortest times. The latest market offerings have a turnaround in order of 10 ms. If the system is to operate on RS485, it is important that the radio modem has its own RS485 as 232/485 converters seem to present more than their fair share of problems when used with radio modems.

Some systems will require synchronous transmission and some asynchronous. Different systems will have different hand-shaking requirements. The first time purchaser should contact the modem vendor, who will assist.

The radio modem/PLC combination is particularly suited to systems where the control facilities of the PLCs are required at the outstation location. An example of such a system is to be found at a British Steel plant, where about 20 radio modems are used to communicate between Allen Bradley PLCs on moving plant around coke ovens and a PC custom written software.

Standalone telemetry systems

The standalone telemetry systems differ from the modems described in that they have their own process signal I/O and their own radio communication protocol. Generally, the outstations of such systems have little or no control capability of their own, behaving purely as remote I/O for PC-based scada.

Bandwidth limitations and shared RF channels mean that this type of radio-based scada is seldom suitable for any high-speed applications, but is ideal for such applications as water treatment, energy and leakage audit.

Versanet offers continuous RF power level adjustment (from 500 mW downwards), to maximise local bandwidth availability. Each transceiver can use any of the 64 channels available.

A system such as RDTs Versanet consists of a number of nodes, each comprising a communications controller and the requisite I/O cards. Each node also has a serial port which may communicate using a MODBUS protocol. System architecture is usually a PC-based MMI with a number of outstations providing the I/O. The PC may directly read or write to any input or output with radio range. Versanet is unusual in that each node will act as a repeater passing messages for any other node, allowing range to be extended or obstacles avoided.

Communications security is handled by the radio system, which looks after error checking, requests for retransmission, etc all invisible to the users.

General requirements

When selecting a radio system of either of the above general types, the purchaser should look for a few fundamentals. First, the radio should be multichannel. Usage of the band is increasing and to deny oneself the ability to select the operating channel can be a false economy. Secondly, the selected units should have, as a minimum, a means of displaying received signal strength, since this will be found invaluable at the time of commissioning and for diagnostic purposes.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Precision in every drop, powered by ICP technology
Wearcheck Analytical Instrumentation & Environmental Monitoring
Elemental profiling using Inductively Coupled Plasma – Optical Emission spectroscopy provides useful information on the chemical composition of lubricants.

Read more...
A trusted oxygen analyser back in action
Elemental Analytics Analytical Instrumentation & Environmental Monitoring
After a period of discontinuation, Servomex’s Oxy 1810 oxygen analyser has officially returned.

Read more...
Multi-channel pH and conductivity controller for the water sector
Senseca Analytical Instrumentation & Environmental Monitoring
The measurement of pH and conductivity plays an integral role in water systems. Senseca South Africa has introduced a multi-channel controller that allows the connection of up to five digital sensors and a frequency-emitting flow sensor.

Read more...
DEKRA Industrial sets new standards for asset integrity in local petrochemical sector
Analytical Instrumentation & Environmental Monitoring
DEKRA Industrial South Africa has strengthened its position as a leader in hydrogen-induced cracking inspections through a strategic combination of advanced non-destructive testing techniques, investment in state-of-the-art inspection equipment and global technical collaboration.

Read more...
ABB leads in emissions monitoring with industry-first data acquisition system proficiency test
ABB South Africa Analytical Instrumentation & Environmental Monitoring
ABB is the first company to offer a complete package of continuous gas analysis and DAHS systems fully compliant with international standards.

Read more...
Ensuring clean and safe water
Endress+Hauser South Africa Editor's Choice Analytical Instrumentation & Environmental Monitoring
Endress+Hauser’s comprehensive range of disinfection sensors is designed to monitor and control disinfectant levels in water treatment processes.

Read more...
High-precision measurement of insulating gases
WIKA Instruments Analytical Instrumentation & Environmental Monitoring
WIKA has launched the next generation of its GA11 gas analyser. It enables switchgear operators, manufacturers and maintenance companies to record the quality of SF6 gas and alternative insulating gases.

Read more...
Say goodbye to missed contamination with real-time colour monitoring
Analytical Instrumentation & Environmental Monitoring
Applied Analytics offers seamless and rapid colour monitoring in processes with an industry-proven analyser that quickly and accurately monitors colour in your sample stream for impurities and inconsistencies.

Read more...
Metrology laboratory is the heart of data-driven production consistency
Analytical Instrumentation & Environmental Monitoring
Pressing and welding have been at the core of Tier 1 automotive supplier, Malben Engineering for 50 years; but it is the company’s investment in its state-of-the-art metrology laboratory which has set it apart.

Read more...
Unlocking precision: The future of inline concentration measurement
Analytical Instrumentation & Environmental Monitoring
[Sponsored] In today’s resource-conscious industrial world, manufacturers are under growing pressure to optimise productivity, ensure consistent product quality and minimise waste. One of the most effective levers for achieving these goals lies in mastering concentration measurement, and Anton Paar is redefining how it is done.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved