Analytical Instrumentation & Environmental Monitoring


Expandable environment logger implementation

August 2001 Analytical Instrumentation & Environmental Monitoring

How does one create an environment logging system that can manage an arbitrary number of distributed environment sensors and log measured values to a database, while at the same time working as a server, handling client requests for environmental values from a given sensor over a given time period?

The LabVIEW-based system makes it easy to distribute sensors by using GPIB-ENET. An object-oriented design with GOOP provides the possibility to add sensors dynamically. Measured values are stored in a database by using the SQL toolkit. The network features in LabVIEW enables the implementation of a client-server application.

Keeping track of the environment is essential when developing a product. The environment logger handles an arbitrary number of sensors which makes the system flexible and new sensors can be added, when needed.

By using TCP/IP, sensors can be distributed all over the development and production areas which makes it possible to acquire measured values and store them in a common database for later analysis. The database is also used to store sensor configuration data. Adding a new sensor is easy, just add the new sensor configuration in the database and the system is updated. No change in the code has to be performed.

The system has an active and a passive mode. When running a test the user might want a detailed environment log and the environment logger is running in an active mode. But there may also be the need to log the environment when there is no test running for the UUT ie changes in the environment overnight. Normally, this passive logging is performed not as frequently as active logging during testing. This will optimise the number of measured environment values in the database. The system works as a server and the user can configure the passive logging through a graphical user interface. The active logging can be started remotely from another application, such as a test system, by acting as a client to the system and request logging from a certain sensor over a specified time period. The logged environment values in the database can be accessed immediately through an ordinary web-browser for presentation and no additional software is required to present the measured values.

System overview

The environment logger consists of a server, one or more clients, a database, a web browser and distributed sensors. The different parts communicate through a TCP/IP network as shown in Figure 1.

Figure 1. Environment logger system overview
Figure 1. Environment logger system overview

The core in the system is the server program that handles communication with the distributed sensors and the logging to the database. By using GOOP (National Instruments' graphical object-orientated programming) and creating a sensor class, each sensor is now an object, making it easy to use an arbitrary number of sensors. The sensors are connected to different channels on a GPIB-controlled acquisition unit (such as HP34970A) that is distributed through GPIB-ENET. Information about the sensors is retrieved from the database where the type of sensor, channel and address of the acquisition unit, location, measurement unit, gain and offset, min and max range are stored. The user configures the passive background logging through a graphical user interface, choosing which sensors should be active and the logging interval and the values are stored in the database. The server also contains an alarm function, if any sensor value is out of range an e-mail or SMS is sent.

Client driver

The environment logger acts as a server and makes it possible for other applications to receive environment values from a certain sensor for a specified time period by connecting as a client. The measured values are stored in the database as well as being returned directly to the client, making it possible to use the environment logger as a part of its own system. A public LabVIEW driver is freely available, making client applications easy to create.

Server overview

The server consists of five parallel processes. Figure 2 shows a server overview with the internal communication between the processes.

Figure 2. Server overview. Five processes are used in the server
Figure 2. Server overview. Five processes are used in the server

The first process handles the graphical user interface and takes care of user actions. Two processes are used to handle client requests. Process two is only waiting for new clients to connect and as soon as one tries to connect, the request is put in the connection queue to process three that will take care of the request. This way maximum performance is achieved.

There is a separate process that handles the communication with the sensors and performs the actual logging. The logging gets the orders from the log setting queue, where commands have been queued either by client request or from the graphical user interface. The measured environment values are stored in a buffer that the last process is removing queue elements and store them in the database. By using two processes for logging and storing the results in database, logging will never be interrupted by the database storage that sometimes might be slow. This way of implementing an environment logging system creates a flexible, stable and powerful system that continually runs in the background, comfortably delivering environment data well into the future.

Products used to implement this datalogger include LabVIEW 5.1/6.02, GOOP, GPIB-ENET, GPIB-ENET/100, SQL toolkit and Internet toolkit.

National Instruments

(011) 805 8197

[email protected]

www.ni.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ensuring occupational health and safety in mining
Analytical Instrumentation & Environmental Monitoring
Probe Integrated Mining Technologies (Probe IMT) has partnered with M3SH Technology to offer state-of-the-art environmental monitoring solutions that address these dual requirements.

Read more...
Sustainability of surface water
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...
Keeping an eye on invisible radiation
Omniflex Remote Monitoring Specialists Analytical Instrumentation & Environmental Monitoring
At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story as spent nuclear fuel remains radioactive for centuries, and requires rigorous safety processes to safeguard against leaks.

Read more...
Effective dust control in sugar processing
Analytical Instrumentation & Environmental Monitoring
BLT WORLD specialists work in conjunction with the global ScrapeTec team to offer dependable solutions for specific problems at the transfer points of conveyor systems in many industries where dust and material spillage are concerns, including the sugar sector.

Read more...
A benchmark for lubricant reliability in mining
Analytical Instrumentation & Environmental Monitoring
According to Craig FitzGerald from ISO-Reliability Partners, mines can save R500 000 or more on their yearly mill cleaning costs, while electricity consumption can be reduced by up to 12%, and lubricant consumption lowered up by up to 60% when using Bel-Ray Clear Gear lubricant.

Read more...
Safeguarding precision in industrial radiometric measurements
Mecosa Analytical Instrumentation & Environmental Monitoring
In the complex landscape of industrial plant operations, precision is paramount, especially when it comes to weld inspections to test for structural integrity of pipes. Berthold has the ideal answer to this challenge – X-Ray Interference Protection.

Read more...
New indoor air quality monitor
RS South Africa Analytical Instrumentation & Environmental Monitoring
RS South Africa has available a new indoor air quality (IAQ) monitor that provides continuous, easy-to-read, and accurate real-time monitoring of air quality in indoor environments.

Read more...
A quick guide to disinfection
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The distribution system in a drinking water network provides a reliable supply of high-quality water to consumers. Endress+Hauser’s range of robust, low-maintenance sensors are ideal for monitoring disinfectant levels in the water.

Read more...
Multi-parameter measuring system for water quality monitoring
KROHNE Analytical Instrumentation & Environmental Monitoring
Monitoring different parameters in water treatment processes can lead to a situation where different measuring points are scattered across the plant.

Read more...
Optimising energy consumption in the chemical industry
Anton Paar Analytical Instrumentation & Environmental Monitoring
To optimise energy consumption and save valuable resources on chemical process plants, operators have to continuously measure parameters such as concentration, raw density, sound velocity and refractive index. With Anton Paar’s wide product range, the process application team has many options for cutting-edge laboratory measurement technologies, and can develop tailor-made mathematical models for every application.

Read more...