System Integration & Control Systems Design

Enabling an energy-efficient HVAC system for a hypermarket

March 2020 System Integration & Control Systems Design

Heating, ventilation and air conditioning (HVAC) is the technology of indoor and vehicular environmental comfort. HVAC systems are mostly used in hypermarkets to provide shoppers comfort and acceptable indoor air quality, but they also consume massive amounts of energy. In order to optimise energy consumption, traditional HVAC systems collect energy usage data at intervals. Although traditional systems are good at retrieving energy consumption data, they lack rules-based logic capabilities to interpret the data and determine further action. Therefore, most HVAC systems rely on human operators to manually adjust the system based on its current environmental temperature, as essential equipment, such as chillers, pumps, and fans, is not connected to a network.

Adopting sensors to acquire real-time data is not always that straightforward because of interoperability issues among the large variety of protocols in a network, making it a very costly upgrade to overcome this challenge. Another hurdle is translating data into a timely response through automatically adjusted settings to optimise energy savings. A hypermarket required an IIoT solution that connected chillers, pumps, fans, and sensors to enable automated demand response control of the HVAC system, based on the real-time temperature and business hours, to decrease the activation time of chiller systems and help the hypermarket save energy and reduce operating costs.

System requirements included:

• A timely response to automatically control the HVAC system based on business hours and the current environmental conditions of the hypermarket.

• Tracking energy usage anytime and anywhere to ensure continuous energy efficiency by acquiring and analysing data from the HVAC system (e.g., water-cooled chiller temperature, power consumption, etc.)

The Moxa solution: active energy efficiency with minimum programming effort

By deploying resistance temperature detector (RTD) sensors, power meters, and Ethernet remote I/O in the physical environment, real-time serial, digital, and analog data about the environmental temperature, water-cooled chiller temperature, pump speed, and power consumption can be acquired and transmitted to the database to determine further action.

To automatically enable the settings adjustment of the chiller, pump and fan, based on the real-time temperature in the hypermarket, the commands to regulate the functioning of the smart HVAC can be set by Click&Go; Plus, a programming-free control logic that is included in the Ethernet remote I/O (ioLogik Series). The DI channels monitor the machine status of the chiller, pump, and fan. The DO channels control the settings of the chiller, pump, and fan, based on the information provided by the Ethernet remote I/O (ioLogik E1260), which takes temperature readings around the hypermarket.

Click&Go; Plus also benefits the hypermarket by allowing it to operate its HVAC system according to its business hours. Another key feature of Moxa’s solution is that the I/O and connected serial device’s data, e.g., power meters, can be sent to the MySQL database, displaying the system and energy usage status via the web server. By collecting field site OT data and sending it through Moxa’s data acquisition suite (MX-AOPC Suite) to the database reduces system integrators’ workload immensely. What’s more, it allows the customer to connect its legacy HVAC OT systems to IIoT networks.

The hypermarket’s management can log into a web console that allows them to monitor the entire HVAC system and the amount of energy that has been saved. As the HVAC system can now be remotely monitored, engineers do not need to be dispatched for routine inspections. They are only sent out when a problem arises, which needs immediate attention. Both of these features help the end user to reduce total cost of ownership of the system.

Why Moxa

• Easy to use Click&Go; Plus, a programming-free control logic to control the HVAC system based on current environmental conditions.

• Expansion capability by supporting various interfaces and protocols in one device (e.g., DI/DO, AI/AO, RS-485, Ethernet).

• Saves implementation as well as labour costs with daisy-chain topology.

• Supports active tags to send I/O and RS-485 meter data to the MX-AOPC UA server for HMI integration.


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SCiBOTRON’s quality culture the key to success
May 2020 , System Integration & Control Systems Design
The company was founded on lean principles and quickly grew into a QSE (Qualifying Small Enterprise). Ricardo Paddy, managing director and founding member, attributes one of the reasons for the company’s ...

PC-based control monitors road tunnel with flexible scalability
September 2020, Beckhoff Automation , System Integration & Control Systems Design
With more than 200 Industrial PCs in operation, the Kaisermühlen Tunnel in Vienna shows that scalable PC-based control technology from Beckhoff is an optimum automation platform in this environment.

EtherCAT I/O for conveyor control
September 2020, Beckhoff Automation , System Integration & Control Systems Design
Integrated compact motor controller reduces cabling effort and increases diagnostic capabilities for roller conveyor systems.

Making Machine-as-a-Service a reality
September 2020, RJ Connect , IT in Manufacturing
Using cloud-based software, machine builders can access their machines anytime, allowing connections to be set up to link the machine builders and their clients.

Robots could solve the social distancing problem
September 2020 , System Integration & Control Systems Design
While South Africa has seen a significant uptake in robotic technology, there are signs it will grow in the years to come as businesses make provision for these types of advancements.

Fully automated CIP system upgrade at a food factory
September 2020, Hybrid Automation , System Integration & Control Systems Design
Hybrid automation was recently approached to upgrade the CIP system at a food production plant based on the East Rand of Johannesburg.

Machine upgrade at Rostberg
August 2020, Ana-Digi Systems , System Integration & Control Systems Design
Ana-Digi Systems designs and delivers a state-of-the-art, reliable machine upgrade to match its client’s requirements of easy setup and low maintenance.

HMIs improve operations and maintenance collaboration
June 2020, Emerson Automation Solutions , System Integration & Control Systems Design
It is essential that operators and maintenance engineers work together to resolve issues quickly, before they affect plant performance. However, coordinating actions between these departments can be challenging.  ...

SLE5 series label sensor
June 2020, Turck Banner , System Integration & Control Systems Design
The small infrared light spot of Banner’s new SLE5 can quickly detect the gap between opaque labels on clear or opaque backing. The 5 mm slot width and 50 mm slot depth allow precise detection of a wide ...

The IIoT powered village
July 2020, RJ Connect , IT in Manufacturing
Creating power solutions that brighten the lives of remote communities.