Editor's Choice


Control loop: Case History 160 - More problems with control

May 2018 Editor's Choice Motion Control & Drives

In a recent assignment to sort out problems being experienced in a petrochemical refinery, I came across the following two examples:

Drum pressure misbehaving

The first was with the control of an overheads drum pressure which was behaving badly. In particular the cascade secondary flow control from the pressure was in an unstable cycle and was interacting with other loops causing all sorts of problems.

The flow loop was tested first. The tuning was very slow and it was found that a PV (process variable) filter with a time constant of 15 seconds had been used. This is a relatively huge filter for a flow loop and is definitely not recommended, particularly as one wants a cascade secondary loop to have really fast control, so that it does not interact with the primary loop. It was also seen that the loop was in a continuous unstable cycle when in automatic. This can be seen in the first part of the recording in Figure 1. It should also be mentioned that loop was badly tuned with a Proportional gain of 1.0, and an Integral of 0.12 minutes/repeat.

Figure 1.
Figure 1.

Figure 2.
Figure 2.

Figure 2 shows the open loop analytical and tuning test, which was performed with the PV filter removed. It shows:

1. The valve is about 5 times oversized. This can be seen by the relative step sizes of PV and PD (controller output). An oversized valve amplifies all the valve faults and cycling by the oversize factor, and such a large oversize is definitely not recommended.

2. The valve is suffering from about 2% hysteresis which when amplified by the oversize factor means that the control error is being increased to about 10%. (As a general rule of thumb, valve hysteresis should not exceed 1%.) A rough definition of hysteresis is the maximum offset experienced when a valve is moved from a particular position to another, and then commanded to return to the original position.

3. On many steps the valve overshoots and then is slowly being brought back to the correct position by the valve positioner.

The valve’s performance is fairly repeatable even with such severe faults, which means that control of a flow loop that normally has relatively fast dynamics should be possible, although action could be taken when possible to repair or replace the valve. Therefore a new tuning was done which was designed to give a critically damped response to a step change on the PD, i.e. the fastest response to the step without overshoot. The reason for this is to minimise valve reversals, as each time the valve has to be reversed will necessitate the controller’s integral term having to ramp the output through the hysteresis band before the valve can start moving in the opposite direction, which can dramatically slow the control. The new tuning resulted in a Proportional gain of 0.05, and an Integral of 0.03 minutes/repeat.

The later part of the recording shown in Figure 1 shows how well the control worked with this tuning. Comparing the original and final tunings will clearly show why the loop was originally in a continuous unstable cycle.

An interesting fact is that control response is largely due to the product of Process Gain x Controller Gain. Therefore a five times oversized valve means that the Process Gain is about five. Therefore the Controller Gain needs to be five times smaller than it would be if the Process Gain was unity if stable and robust response is to be attained.

Another interesting fact is that this is yet another example which shows how effective cascade control is in overcoming valve problems on processes with slow dynamics. In this case, if the pressure controller had been directly connected to the valve and not via the flow loop, there is almost certainly no chance that any pressure control could have been obtained with the controller in automatic.

Sticky valve in a flow loop

The second example is of another flow loop which is cascaded from a level control. Again, it was a loop that had been flagged as performing very badly by the operators. Figure 3 shows the open loop test.

Figure 3.
Figure 3.

The test shows very clearly how badly the valve was performing. It is extremely sticky particularly when closing, and sometimes missed steps altogether. There is no way that good flow control can be achieved with this valve.

Another point of interest is that the process gain appears to be very much smaller than unity. This is normally a sign that the transmitter span is far too wide, but if that was the case here, then one would expect the PV signal to be near the low end of the scale, which it is not. This is definitely a case where the calibrations of both the valve and the transmitter need checking, apart from servicing the valve and getting it to respond properly.

Once again there is no way that they would have been able to control the level in automatic if the valve had been directly connected to the level controller’s output. It is really amazing what valve problems can be hidden and overcome when using cascade secondary flow controls on slower primary loops.

Michael Brown is a specialist in control loop optimisation with many years of experience in process control instrumentation. His main activities are consulting, and teaching practical control loop analysis and optimisation. He gives training courses which can be held in clients’ plants, where students can have the added benefit of practising on live loops. His work takes him to plants all over South Africa and also to other countries. He can be contacted at Michael Brown Control Engineering cc, +27 (0)82 440 7790, [email protected], www.controlloop.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Case History 198: Cascade control overcomes valve problems
Michael Brown Control Engineering Fieldbus & Industrial Networking
A large petrochemical refinery asked me to perform an audit on several critical base layer control loops. This article deals with a problem found on a valve controlling the flow of fuel to a heat exchanger.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
PC-based control for fertiliser
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
On a farm in the USA, valuable ammonia is extracted from slurry and processed into ammonium sulphate. NSI Byosis has transformed this complex process into a flexible modular system. This modular approach requires an automation solution with flexible scalability in both hardware and software, which this Dutch company has found in PC-based control from Beckhoff.

Read more...
Loop signature 28: Things to consider when tuning.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
I was giving a course at a remote mine in the middle of the Namibian desert. We were discussing tuning responses, and as I always do on my courses, I mentioned that in my opinion ¼ amplitude damped tuning is not desirable, and is in fact not good.

Read more...
Control without complexity
Editor's Choice Motion Control & Drives
In an era where precision, performance and smart control define industrial success, the right driver can make all the difference. At Axiom Hydraulics, we’ve seen firsthand how the Sun Hydraulics XMD series transforms hydraulic systems, from mining and construction to agriculture and automation.

Read more...
The thermal combustion balancing act
Editor's Choice
From carbon taxes to export tariffs, and cost containment to security of supply and sustainability, companies are under increasing pressure to switch to greener fuel sources. Associated Energy Services warns that this pivotal change has some potentially serious knock-on effects.

Read more...
What’s driving the IE3 motor revolution?
WEG Africa Editor's Choice
The International Efficiency 3 (IE3) motor standard will soon become South Africa’s legal minimum standard, mandating that local suppliers offer more efficient electric motors. What is driving this change, and how does it affect the many industries that rely on these modern electric workhorses?

Read more...