Pressure Measurement & Control


Choosing the correct diaphragm seal for a pressure gauge or ­transmitter

August 2014 Pressure Measurement & Control

Modern process manufacturing procedures demand ever greater accuracy and reliability from their pressure measuring instruments and in some applications, where there are chemical or hygiene considerations, it may be necessary to isolate the pressure measuring instrument from the process medium.

This isolation is achieved by using a pressure-sensitive diaphragm made from a material resistant to the process medium and enclosed in a system fitted to the base of the instrument. The space between the diaphragm and the measuring element is then evacuated, filled with a suitable fill fluid and sealed. The process pressure exerts a force on the exposed face of the diaphragm and as the diaphragm flexes, it pushes inwards and compresses the fluid that is channelled directly into the measuring element.

Application

Knowing which process requires the use of a diaphragm seal is critical to maintaining the integrity and prolonging the service life of the instrument. A diaphragm is usually required under the following conditions:

* When the process medium is corrosive to the working parts of a standard pressure gauge or transmitter.

* The process medium is viscous or contains solid particles that could cause the inlet to become blocked.

* The process medium is prone to solidifying over time e.g. it may freeze as the temperature drops or it may set as it dries.

* It is important to eliminate the formation of bacteria in the process connection such as in food and beverage applications.

Potential problems when selecting a diaphragm seal

Avoiding common mistakes will improve the chances of successfully selecting and installing a diaphragm seal.

* A diaphragm that is too small in diameter or not flexible enough to allow for natural thermal expansion of the fill fluid, leading to zero shifts and false pressure readings.

* The process or ambient temperatures exceed the acceptable service range of the fill fluid.

* In differential pressure applications, very small differential readings may not be possible owing to the amount of force required to drive the diaphragm and the measuring element.

* The fill fluid inertia is greater than the force required to move the measuring element.

* The length and internal diameter of capillary in combination with the fill fluid viscosity create resistance, driving up system response time to unacceptable levels.

* The process temperature can influence the ambient temperature close to the process.

* Care should be taken when specifying a seal system for measuring a vacuum or high vacuum pressure. While they perform normally for most standard vacuum applications, as the pressure moves closer to a perfect vacuum, acceptable accuracy levels become more difficult to achieve.

Functional characteristics

Diaphragm seal accuracy at 20°C may vary according to chemical properties and these values must be added to the accuracy class of the instrument. The accuracy of vacuum however cannot be guaranteed beyond -0,85 bar in standard executions. This is due to the fact that most filling fluids contain microscopic amounts of air or trapped gases, which tend to expand significantly as a pressure of absolute zero is approached. This expansion affects the measuring element in the instrument.

Influence of temperature

The complete pressure sensing system is filled with an appropriate process filling fluid at a specific temperature (generally 20°C) called the reference temperature. An increase or decrease of ambient temperature or of the process fluid makes a proportional variation in the fill fluid volume. Consequently this has an impact on the internal pressure of the closed sensing system that could result in a zero error in the instrument. To minimise this, it is necessary to compensate for the volume variation caused by temperature. Small diameter diaphragms may compensate only for a small variation of volume. It is suggested to use, according to the process conditions, chemical seals with diaphragms of the biggest possible effective diameter. Furthermore, when the process temperature exceeds 150°C, but is lower than 250°C, it is necessary to install the instrument with a cooling tower to avoid the effects of the thermal transmission between diaphragm seal and the instrument. Above 250°C a capillary line should be used to protect the instrument from high process temperatures.

The fill fluid used is very important for the temperature application range of the chemical seal, so the minimum and maximum temperatures of the process medium must be considered. Additionally the fill fluid must be compatible with the medium, especially for media such as oxygen or for applications in the food industry. This is important in case the diaphragm is ruptured and as a result the fill fluid is able to mix with the process medium.

Instruments with capillary

The use of a capillary allows remote reading of the instrument and limits the effects of the process temperature (above 250°C) on the accuracy of the instrument. A capillary length of 500 mm is normally adequate to maintain the temperature of the instrument close to the ambient value.

The length of the capillary should be as short as possible. It is advised not to exceed six metres, because the temperature variation on the capillary length may influence the accuracy and response time.

Pressure instruments with a capillary require a suitable wall or panel mount flange or bracket to mount the pressure gauge or transmitter. A difference in height between pressure instrument and the diaphragm seal adds an increase in the total error due to the hydrostatic effects on the fill fluid, often referred to as head pressure. If such difference is known, compensation during manufacture or in the spot zeroing will be required.

Diaphragm seals can be fitted to most of SA Gauge’s pressure gauges, transmitters or pressure switches. Start to finish in-house manufacturing caters for the development of customised seals for unique OEM applications and the fitting and filling of diaphragm seals to instruments from other manufacturers can be done with minimal delay.

For more information contact SA Gauge, 0860 007 911, sales@sagauge.com, www.sagauge.com


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Pressure sensors for Industry 4.0
Technews Industry Guide: Industrial Internet of Things & Industry 4.0, Turck Banner , Pressure Measurement & Control
Turck’s new pressure sensors of the PS+ series offer complete access to sensor parameters via IO-Link.

Read more...
New monoflange design prevents fugitive emissions
July 2019, WIKA Instruments , Pressure Measurement & Control
The new WIKA model IVM monoflange for connecting pressure measuring instruments to the process is particularly suitable for applications involving critical liquids, gases and vapours. Special seals also ...

Read more...
Pressure transmitters for mobile equipment
June 2019, Turck Banner , Pressure Measurement & Control
In order to provide solutions for use in mobile equipment, Turck has expanded its portfolio of pressure sensors with the introduction of the PT1100/2100 transmitters. This includes mining, forestry, agricultural ...

Read more...
Understanding accuracy specifications
May 2019, EOH Process Automation Solutions , Pressure Measurement & Control
Pressure measurement device accuracies are commonly specified as percentage of full scale, or percentage of reading, and the difference is significant. If an accuracy statement simply names a percentage ...

Read more...
Miniature IR thermometer for plastic film
May 2019, Instrotech , Pressure Measurement & Control
Temperature is a key physical variable for ensuring quality in the production of plastic film. The application of non-contact temperature measurement technology poses the challenge that films with a thickness ...

Read more...
Pressure sensor with IO-Link
May 2019, WIKA Instruments , Pressure Measurement & Control
WIKA has a new, flexible pressure sensor with IO-Link in its portfolio. The model A-1200 is used for pressure monitoring or as a PNP/NPN switch, especially in intelligent machines. The new pressure sensor ...

Read more...
Pressure and level transmitter
Africa Automation Fair 2019 Preview, Morton Controls , Pressure Measurement & Control
The Anderson-Negele L3 pressure and level transmitter is designed for measuring variable process pressure or hydrostatic applications in the hygienic industry. It can be viewed at Stand C13. Features ...

Read more...
SA Gauge receives SANAS accreditation
April 2019, SA Gauge , News
Temperature and pressure gauge manufacturer, SA Gauge recently received the South African National Accreditation System (SANAS) accreditation conforming to the ISO/IEC 17025 standard for temperature calibration. ...

Read more...
Hoses and fittings for water blasting
April 2019, Parker Hannifin Sales Company South , Pressure Measurement & Control
Water blasting is the use of water with high pressure and high speed to clean and treat various surfaces. It can also be used to cut through different solid materials like steel and concrete. The advantage ...

Read more...
New pressure sensor with IO-Link
April 2019, ifm - South Africa , Pressure Measurement & Control
Besides continuous process value monitoring via IO-Link, the new PV type pressure sensor from ifm electronic offers two switching outputs. It also features a compact design with G ¼ process connection ...

Read more...