Fieldbus & Industrial Networking


Reliably determine actual fieldbus availability

June 2014 Fieldbus & Industrial Networking

Communication via fieldbus is highly valued in process automation due to its reliability. Like any installation technology, however, it is not exempt from faults and failures. But what is the actual risk of failure and what availability can be realistically assumed? Calculations often provide an unsatisfactory reflection of the real situation. This results not only in incorrect assumptions, but often in protective measures that are expensive and barely effective.

In practice, to what degree does availability affect whether a fieldbus installation is commissioned? You need to understand what can cause problems and how best to protect against them, so that you can take preventive measures and ensure increased fieldbus availability. However, availability calculations are based on descriptions, assumptions, and observations from the theory of probabilities. Here at Pepperl+Fuchs, we have discovered from many years of interaction with users that these calculations are based on assumptions that are sometimes unrealistic, and sometimes just plain wrong. Of course, the results of such calculations do not really reflect reality.

What do we mean by actual availability?

The International Electrical Vocabulary (IEV) has 47 different definitions of the term availability and, accordingly, different ways of calculating it. Stationary availability is usually called availability (A) for short. It is defined as the mean value of current availability in a time interval. The mean time to failure, called MTTF, and the mean down time, called MDT, can be used for a simplified calculation of the stationary availability, provided these values are constant. In this case, the following formula is used for the calculation:

Often, the inverse of the Lambda failure rate for a product or series of products is mistakenly used to calculate the MTTF, such as for a fieldbus segment. But this procedure reflects only the random failure of the component(s). This means that important systematic criteria are not being taken into account. In practice, these criteria play a crucial role in availability: When environmental influences as well as the mode of operation and its effect are not accounted for in the calculation, a significant discrepancy arises between the mathematical theory and the effect in practice when it comes to process automation. However, a brief glance at alarm and failure statistics makes it very clear that it is precisely the effects of the mode of operation and environmental conditions that are responsible for faults much more frequently than random events that cause component failure.

An example shows the difference

The extent to which this type of one-dimensional view can distort reality when calculating availability is shown by a simple example: If a person in his role as employee is used instead of the process system, the result is an MTTF of 1401 years or 72 800 weeks according to the above-mentioned procedure. But this value takes into account only the ‘total failure’ i.e., possible death of an employee, which certainly does not accurately reflect the employee’s actual availability in his professional life. If you further assume that a replacement is found for a failed employee after six weeks (=MDT), the availability is calculated as:

Of course, important aspects of everyday working life remain unaccounted for. Much more frequent causes of absence from the workplace are vacation, illness, doctor’s appointments, or business trips, which can occur several times a year. If you assume that a failure of on average two weeks occurs twice a year for these reasons, the availability is calculated as:

Reduction of failure risks

Finding the right method of calculating availability is just the first basic step. Once you have calculated reliable figures for the actual availability of a plant, it follows that you must take measures to reduce the failure rates effectively and thus increase availability. Systematically, there are four methods to protect against a component or part of a system failing and thus positively influence the MTTF.

First: Preventive measures and procedural instructions must be given. The correct and protective handling of technology is often enough to help reduce failures significantly.

Second: The predictive, automated handling of faults. With this method, techniques and components are used that have been specially developed to detect and isolate typical faults in a targeted and proactive manner, before they can spread. The impact of the fault remains limited to a deactivated device, while the plant itself remains in operation. For example, if a measuring device connection is deactivated in the case of a short circuit, but the fieldbus segment remains unaffected, because the failure of an individual measuring part is tolerable.

Third: The detection of faults through diagnostics. With this method, discrepancies between the actual status and the best possible status are detected through monitoring and reported to the control room. Before this can have a negative impact on the overall function, proactive intervention can be taken. For example, if you measure a change in the frequency of filling level sensors using a tuning fork, this indicates that the sensor has become jammed. The problem can then be corrected.

Fourth: Redundancy. This protects against failures whose causes have to be investigated in the device itself. Redundancy is indispensable if these faults cannot be avoided in any other way, but must absolutely be controlled to ensure safety or plant availability. This is the case for power supplies and control technology boards or for field devices where the measuring circuit is required to have a very high level of availability.

For more information contact Mark Bracco, Pepperl+Fuchs, +27 (0)87 985 0797, [email protected], www.pepperl-fuchs.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Introduction to Part 2 loop signatures and process transfer functions
Fieldbus & Industrial Networking
The previous series of loop signature articles dealt with the basics of control loop optimisation, and concentrated on troubleshooting and ‘SWAG’ tuning of simple processes. In this new series, consideration will be given to dealing practically with more difficult issues like interactive processes, and with processes with much more complex dynamics.

Read more...
Siemens sets new standards in drive technology
Fieldbus & Industrial Networking
Siemens is setting new standards in industrial drive technology with the launch of its new high-performance drive system, Sinamics S220. This offers a seamless and innovative drive system with comprehensive simulation and analysis capabilities and advanced connectivity features that enable full integration into digital work processes.

Read more...
PC-based control in the plastics industry
Beckhoff Automation Fieldbus & Industrial Networking
Nissei Plastic, an injection moulding machine manufacturer based in Japan is implementing a worldwide tend towards open automation systems from experienced specialists using PC and EtherCAT-based control technology from Beckhoff.

Read more...
Loop Signature 31: Non-linearity in control loops (Part 2)
Michael Brown Control Engineering Fieldbus & Industrial Networking
This article is a continuation of Loop Signature 30 published in the last issue in this series, exploring reasons for non-linearities which may be encountered in feedback control loops

Read more...
PC-based control optimises robotic parts handling on plastics machinery
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
NEO is a cartesian robot developed by INAUTOM Robótica in Portugal for parts removal on plastics machinery. Its aim is to increase system productivity. NAUTOM Robótica has entered into a strategic partnership with Bresimar Automação to increase the working speed of the cartesian robots using advanced control and motion solutions from Beckhoff. The result is a comprehensive, future-proof automation solution for its entire family of cartesian robots.

Read more...
PC-based control for flat wire motors for electric vehicles
Beckhoff Automation Fieldbus & Industrial Networking
Special machine manufacturer, ruhlamat Huarui Automation Technologies unveiled the second generation of its mass production line for flexible stators with bar winding. This enables extremely short production cycle and line changeover times, supported by PC- and EtherCAT-based control technology from Beckhoff.

Read more...
Case History 200: The final case history – desuperheater control problem.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
For this final article I have chosen to relate a problem that existed in a desuperheater temperature control on a boiler in a petrochemical refinery.

Read more...
PC-based control technology in additive manufacturing
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
As an open control platform, PC-based control supports different engineering approaches, including low-code programming. The machine builder, Additive Industries uses this to create the code for the TwinCAT runtime of its 3D printers.

Read more...
Suppression and safety solutions for fire and gas in mission-critical industries
Fieldbus & Industrial Networking
By representing world-leading brands and focusing on fully integrated, certified systems, HMA South Africa is positioning itself as a trusted partner in fire detection, suppression and explosion-proof safety solutions across the continent.

Read more...
Integrating fire alarm systems into building management systems
Beckhoff Automation Fieldbus & Industrial Networking
Fire alarm systems work independently of the building automation system. Schrack Seconet has developed a flexible gateway using ultra-compact industrial PCs and TwinCAT from Beckhoff, which can be used to flexibly convert a customer-specific communication protocol to a wide range of transmission standards.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved