IT in Manufacturing


Cooling today’s sizzling hot data centres

August 2013 IT in Manufacturing

Virtually all IT equipment is air-cooled i.e. each piece of IT equipment takes in ambient air and ejects waste heat into its exhaust air. Since a data centre may contain thousands of IT devices, the result is that there are thousands of hot airflow paths within the data centre that together represent the total waste heat output, which must be removed.

With power densities of modern IT equipment pushing peak power density to 20 kW per rack or more, simulation data and experience show traditional cooling, dependent on air mixing, no longer functions effectively. To address this problem, design approaches exist that focus on room, row, and rack-based cooling. In these approaches, the air conditioning systems are specifically integrated with the room, rows of racks, or individual rack in order to minimise air mixing.

Every data centre air conditioning system has two key functions. The first, bulk cooling capacity, is the same for room, row and rack-based cooling. The major difference lies in how each cooling system performs the second critical function – distribution of air to the loads. Controlling the airflow is therefore the main objective of the different cooling system design approaches.

Room-based cooling

With room-based cooling, the computer room air handler (CRAH) units operate concurrently to address the total heat load of the room. Room-based cooling may consist of one or more air conditioners supplying cool air completely unrestricted by ducts, dampers, vents and more; or the supply and return may be partially constrained by a raised floor system or overhead return plenum.

The room-based design is heavily affected by the specific constraints of the room, including the ceiling height, the room shape, obstructions above and under the floor, rack layout, CRAH location, the distribution of power among the IT loads and more. When the supply and return paths are uncontained, the result is that performance prediction and performance uniformity are poor, particularly as power density is increased. Therefore, with traditional designs, complex computer simulations called computational fluid dynamics (CFD) may be required to help understand the design performance of specific installations. Furthermore, alterations such as IT equipment moves, add-ons, and changes may invalidate the performance model and require further analysis and testing. In particular, the assurance of CRAH redundancy becomes a very complicated analysis that is difficult to validate.

Another significant shortcoming of uncontained room-based cooling is that in many cases the full rated capacity of the CRAH cannot be utilised. This condition occurs when a significant fraction of the air distribution pathways from the CRAH units bypass the IT loads and return directly to the CRAH. The result is that cooling requirements of the IT layout can exceed the cooling capacity of the CRAH despite the required amount of nameplate capacity.

Row-based cooling

With a row-based configuration, the CRAH units are associated with a row and assumed to be dedicated to a row for design purposes. The CRAH units may be located in between the IT racks or they may be mounted overhead.

Compared with the traditional uncontained room-based cooling, the airflow paths are shorter and more clearly defined. In addition, airflows are much more predictable, all of the rated capacity of the CRAH can be utilised and higher power density can be achieved.

Row-based cooling has a number of side benefits other than cooling performance. The reduction in the airflow path length reduces the CRAH fan power required, thus increasing efficiency.

This is not a minor benefit, when we consider that, in many lightly loaded data centres, the CRAH fan power losses alone exceed the total IT load power consumption. A row-based design allows cooling capacity and redundancy to be targeted to the actual needs of specific rows. For example, one row of racks can run high-density applications such as blade server, while another row satisfies lower power density applications such as communication enclosures.

For new data centres less than 200 kW, row-based cooling should be specified and can be implemented without a raised floor. For existing data centres row-based cooling should be considered when deploying higher density loads (5 kW per rack and above).

Rack-based cooling

With rack-based cooling, the CRAH units are associated with a rack and are assumed to be dedicated to a rack for design purposes. The CRAH units are directly mounted to, or within, the IT racks. Compared with room or row-based cooling, the rack-based airflow paths are even shorter and exactly defined so that airflows are immune to any installation variation or room constraints. All of the rated capacity of the CRAH can be utilised, and the highest power density (up to 50 kW per rack) can be achieved. The reduction in the airflow path length reduces the CRAH fan power required, increasing efficiency even further.

A rack-based design allows cooling capacity and redundancy to be targeted to the actual needs of specific racks, for example, different power densities for blade servers vs. communication enclosures. Furthermore, N+1 or 2N redundancy can be targeted to specific racks. By contrast, row-based cooling only allows these characteristics to be specified at the row level and room-based cooling only allows these characteristics to be specified at the room level.

As with row-based cooling, the deterministic geometry of rack-based cooling gives rise to predictable performance that can be completely characterised by the manufacturer. This allows simple specification of power density and design to implement the specified density. Rack-based cooling should be used in all data centre sizes where cooling is required for stand-alone high-density racks. The principal drawback of this approach is that it requires a large number of air conditioning devices and associated piping when compared to the other approaches, particularly at lower power density.

Hybrid cooling

Nothing prevents room, row and rack-based cooling from being used together in the same installation. Placing various cooling units in different locations in the same data centre is considered a hybrid approach. This approach is beneficial to data centres operating with a broad spectrum of rack power densities.

Another effective use of row and rack-based cooling is for density upgrades within an existing low-density room-based design. In this case, small groups of racks within an existing data centre are outfitted with row or rack-based cooling systems. The row or rack cooling equipment effectively isolates the new high-density racks, making them ‘thermally neutral’ to the existing room-based cooling system.

Another example of a hybrid approach is the use of a chimney rack cooling system to capture exhaust air at the rack level and duct it directly back to a room-based cooling system. This system has some of the benefits of a rack-based system but can integrate into an existing or planned room-based cooling system.

To make effective decisions regarding the choice between room, row, or rack-based cooling for new data centres or upgrades, it is essential to relate the performance characteristics of the cooling methods to practical issues that affect the design and operation of real data centres.

For more information contact Eben Owen, Schneider Electric SA, +27 (0)11 557 6600, [email protected], www.schneider-electric.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Protecting buildings’ embodied carbon with retrofitted systems
Schneider Electric South Africa Sensors & Transducers
The World Economic Forum has said that around 80% of the buildings in existence will still be around in 2050; it is therefore essential that in order to combat climate change we retrofit them for energy efficiency.

Read more...
Three decarbonisation myths and how organisations can debunk them
Schneider Electric South Africa Electrical Power & Protection
A UN Climate Change Report revealed that the world is on track to miss its 2050 net zero targets, with temperatures expected to increase by over 2,4°C by 2100. To help shift positive intent to concrete action, Schneider Electric outlined three of the most common myths surrounding decarbonisation and how organisations can get started on their decarbonisation journey.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
IT in Manufacturing
Rockwell Automation’s?10th?State?of?Smart?Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12?months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved