IT in Manufacturing


Autonomous edge intelligence solutions

May 2019 IT in Manufacturing

New computing methods are helping to create autonomous edge nodes that are about to change the IIoT landscape. Edge nodes are data-aggregation points in an IIoT system, where the physical world of sensors and actuators interacts with computational resources such as IIoT gateway computers. This new computing model is based on edge nodes that are enhanced with local storage and computing power, in addition to machine-learning algorithms that enable them to process data locally and make quick decisions. An intelligent edge node enables faster decisions according to local identity management and access control policies, secures data close to its source, and reduces communication costs.

Edge intelligence is edge computing fortified with machine or self-learning algorithms, advanced networking capabilities, and end-to-end security. This article discusses four key elements of a good edge intelligence solution.

1. Localised data processing

The troves of data collected at the edge of a network can quickly lose their relevance. Hence, the data should be processed and useful insights derived from it at the earliest opportunity. Mission-critical systems, such as healthcare and factory monitoring, require quality data measurements and instant decisions. In addition to being time consuming, sending data from the edge to the cloud can lead to data corruption and processed data without the required context.

For these reasons, the edge node should be equipped with the ability to process data locally and only key information should be sent to the cloud to develop data models. Edge nodes with local storage and processing capabilities keep the data closer to the source.

2. Real-time decision making at the edge

Edge intelligence enables real-time decision making at the edge nodes. Decision latency can be drastically reduced by enabling edge node analytics. Machine learning or self-learning algorithms can be developed locally or in the cloud and deployed at the edge to make the edge nodes autonomous, enabling quick decision making.

3. Robust edge-to-node communication

Data integrity is key in the edge-computing model because decisions are made at the edge node level. Data that is sensed and measured at these devices is of little use if the communication between the devices and the edge node is not consistent. No data loss or data corruption can be tolerated as the edge node is now responsible for making key process-related decisions. Other communication aspects to consider are range, bandwidth, device-to-device communication, the communication protocols to support, and how to power edge devices. A good edge network is one that is optimised for wireless sensor communication.

4. Security at the edge

The lifecycle of an IIoT system is often longer than a traditional computing system as many edge devices remain in operation even decades after they were deployed. While servers and PCs are complex enough to allow for security provisions, IIoT nodes are usually low in power consumption and processing power. Edge-intelligence solutions equip the edge node with local storage and processing power and a varied set of software and hardware options help secure the edge devices and nodes. Some of the methods used to secure the edge nodes include:

• Edge platform with end-to-end security.

• Intrusion prevention systems (IPS).

• External hardware security.

• Secure boot capability.

Since edge nodes are the gateways to the physical world, when an edge device or node is compromised it is not just data that is at risk. Cyber attackers can now potentially access unsecure edge nodes and devices to interfere with industrial processes or shut down equipment resulting in financial loss and even life-threatening situations.

For more information contact RJ Connect, +27 11 781 0777, [email protected], www.rjconnect.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Predicting and preventing cyber-attacks with AI and generative AI
IT in Manufacturing
The speed at which cyber threats are evolving is unprecedented. As a result, companies need to implement state-of-the-art technology to protect their data and systems.

Read more...
Real-world lessons in digital transformation
IT in Manufacturing
Synthesis has helped businesses across multiple industries with their digital transformation by solving their unique integration challenges.

Read more...
Enhancing cyber security for industrial drives
Siemens South Africa IT in Manufacturing
The growing connection between production networks and office networks as part of IT/OT integration and the utilisation of IoT have many benefits for industrial companies. At the same time, they also increase the risk of cyber threats. Siemens ensures that your know-how and plants are protected at all times.

Read more...
Immersion cooling systems for data centres
IT in Manufacturing
The demand for data centres in Africa is growing. The related need for increasing rack densities brings with it escalating cooling requirements.

Read more...
Transforming pulp and paper with automation and digitalisation
ABB South Africa IT in Manufacturing
The pulp and paper industry in South Africa is undergoing a significant transformation from traditional manual processes to embracing automation technologies. Automation in pulp and paper mills aims to improve various production stages, from raw material preparation to final product creation.

Read more...