IT in Manufacturing


Enhanced intelligence at the edge

February 2019 IT in Manufacturing

A new computing model that helps create autonomous edge nodes is changing the IIoT landscape. Edge nodes are data-aggregation points in an IIoT system, where the physical world of sensors and actuators interacts with computational resources such as IIoT gateway computers. This new computing model is based on edge nodes that are enhanced with local storage and computing power, in addition to machine-learning algorithms that enable them to process data locally and make quick decisions. An intelligent edge node enables faster decisions according to local identity management and access control policies, secures data close to its source, and reduces communication costs.

Edge intelligence is edge computing fortified with machine or self-learning algorithms, advanced networking capabilities, and end-to-end security. This article discusses four key elements of a good edge intelligence solution.

1. Localised data processing

The troves of data collected at the edge of a network can quickly lose their relevance. Hence, the data should be processed and useful insights derived from it at the earliest opportunity. Mission critical systems, such as healthcare and factory monitoring, require quality data measurements and instant decisions. In addition to being time consuming, sending data from the edge to the cloud can lead to data corruption and processed data without the required context.

For these reasons, the edge node should be equipped with the ability to process data locally and only key information should be sent to the cloud to develop data models. Edge nodes with local storage and processing capabilities keep the data closer to the source.

2. Real-time decision making at the edge

Edge intelligence enables real-time decision making at the edge nodes. Decision latency can be drastically reduced by enabling edge node analytics. Machine learning or self-learning algorithms can be developed locally or in the cloud and deployed at the edge to make the edge nodes autonomous, enabling quick decision making.

3. Robust edge-to-node communication

Data integrity is key in the edge-computing model because decisions are made at the edge node level. Data that is sensed and measured at these devices is of little use if the communication between the devices and the edge node is not consistent. No data loss or data corruption can be tolerated as the edge node is now responsible for making key process-related decisions. Other communication aspects to consider are range, bandwidth, device-to-device communication, the communication protocols to support, and how to power edge devices. A good edge network is one that is optimised for wireless sensor communication.

4. Secure edge

The lifecycle of an IIoT system is often longer than a traditional computing system as many edge devices remain in operation even decades after they were deployed. While servers and PCs are complex enough to allow for security provisions, IIoT nodes are usually low in power consumption and processing power. Edge-intelligence solutions equip the edge node with local storage and processing power and a varied set of software and hardware options help secure the edge devices and nodes. Some of the methods used to secure the edge nodes include:

• Secure edge platform with end-to-end security.

• Intrusion prevention systems (IPS).

• External hardware security.

• Secure boot capability.

Since edge nodes are the gateways to the physical world, when an edge device or node is compromised it is not just data that is at risk. Cyber attackers can now potentially access unsecure edge nodes and devices to interfere with industrial processes or shut down equipment resulting in financial loss and even life-threatening situations.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Why choose between Capex and Opex if you can Totex?
Schneider Electric South Africa IT in Manufacturing
In a sector marked by cyclical demand, high capital intensity, and increasing regulatory and sustainability pressures, mining, minerals and metals (MMM) companies are re-evaluating how they approach procurement and investment.

Read more...
AI and the smart factory
Schneider Electric South Africa IT in Manufacturing
Imagine walking into a factory where machines can think ahead, predict problems before they happen and automatically make adjustments to realise peak performance. This isn’t science fiction, it’s happening right now as AI continues to transform how we run industrial operations.

Read more...
Why your supply chain should be a competitive advantage
Schneider Electric South Africa IT in Manufacturing
The last five years have placed unprecedented strain on global supply chains. Leading companies are turning the challenge into an opportunity to transform their supply chains into a competitive advantage.

Read more...
Why AI will never truly understand machines
Wearcheck IT in Manufacturing
Cutting-edge technology and solutions powered by AI are embraced by specialist condition monitoring company, WearCheck, where the extreme accuracy of data used to assess and diagnose machine health is paramount.

Read more...
Buildings and microgrids for a greener future
Schneider Electric South Africa IT in Manufacturing
Buildings are no longer passive consumers of power. Structures of almost every size are evolving into dynamic energy ecosystems capable of generating, storing and distributing their own electricity. Forming part of this exciting transformation are microgrids.

Read more...
Traditional data centres are not fit for purpose
IT in Manufacturing
Traditional data centre designs are falling short, with nearly half of IT leaders admitting their current infrastructure does not support energy or carbon-reduction goals. New research commissioned by Lenovo reveals that data centre design must evolve to future-proof businesses.

Read more...
AI agents for digital environment management in SA
IT in Manufacturing
The conversation about artificial intelligence in South Africa has shifted rapidly over the past year. Among the technologies changing the pace of business are AI agents - autonomous, task-driven systems designed to operate with limited human input.

Read more...
AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved