Editor's Choice


New toolkits for innovation

January 2019 Editor's Choice

Back in the 1980s, as a junior process engineer, I spent a great part of my first job working with DCS and scada systems. At the time, I was working on a synfuels plant that made use of a Honeywell TDC3000 DCS. Most of the field instruments were connected to the proprietary Honeywell LCN (local control network) and process engineers were not allowed to touch that part of the system. The DCS was connected through an interface to a local scada system, called Cygnus (later Adriot), running on a bulky PDP-11 minicomputer that required its own room. This was my playground. The 10 Mb removable hard disks were also bulky devices coming in a special foam-lined case, which at the time was our version of Big Data. This system was invaluable for monitoring and optimising the plant and a process engineer’s dream.

These early experiences with the PDP-11, using a real-time language from ICI called RTL/2, taught me a great deal about analysing large volumes of plant data. My view at the time was that fully automated manufacturing was ultimately possible, but only if instrumentation data was first consolidated in a DCS/scada system, and only then processed by external systems.

I soon found that this hierarchal layered model of integrating process and business systems, was shared by most of the instrumentation and control community, and also by the big software vendors providing ERP. Later, as I learned more about business processes, I realised that in practice, other federated data integration models were viable and there are many (and often better) ways of configuring data flows relating to a manufacturing process.

A new generation of sensors

Recently, I was interested to learn of several case studies coming out of the oil and gas industry where the IIoT is being used to make significant improvements to energy efficiency and equipment reliability on plants. These stories made me curious, after all, back in the 1980s we had implemented some of the early versions of what evolved into very powerful platforms for process control and automation. So why is it that nearly three decades later there still seems to be so such room for process improvement, particularly in a mature industry like oil and gas?

On closer investigation I learned that many of these recent success stories involved IIoT sensors that completely bypass the DCS and scada systems. These sensors were never included in the original design. To solve specific problems new temporary sensors were located in places that previously had no instrumentation; such as the interior of furnaces, or monitors attached to the surface of moving equipment. In other situations additional performance data is now obtained from existing actuators; information that was previously never used by the DCS. This data stream accessed using a protocol called WirelessHART, connects wirelessly to an IoT gateway, which in turn streams the data to a third-party, cloud-service platform. The result of all these different techniques augments existing plant data with additional data streams accessed from the cloud. This then allows engineers to do a more powerful analysis of equipment performance than was ever possible using the existing scada data.

It occurs to me that the engineers and designers of industrial scale plants have always been focused on getting the basics right, such as traditional safety and operability, but hardly focus at all on optimisation. Optimisation requires a different mind-set, different instruments, different data analysis and different modelling systems. The large expensive DCS/PLC and scada systems implemented in a typical project are not always suited for optimisation, the full requirement for which only manifests itself once the plant has been commissioned.

Cloud-based toolkits

The good news for engineers today is that no longer is it necessary to reconfigure and change already complex proprietary DCS systems to solve every operational problem. There are already a number of cloud-based ‘toolkits for innovation’ that will allow them to build specific diagnostic solutions that use state-of-the-art machine learning, modelling and advanced visualisation capabilities, without disrupting any existing critical control system.

The platforms on which these specialised IIoT solutions are built are evolving fast. For example, recently SAP positioned its Leonardo IoT cloud platform as a ‘digital innovation system’. Leonardo promises to enable exactly the optimisation scenario I have described. The solutions can be small and specialised, such as predictive maintenance on a specific machine, or much more complex such as energy optimisation or logistics management across an entire plant or supply chain.

Leonardo is a ‘container’ of complex interrelated technologies that are still evolving; it is a work in progress. A significant element of the platform is advanced analytics and machine learning. For those manufacturing companies that have a long-term vision, SAP’s cloud ecosystem platform is worth a closer look. There are other alternatives as well, as cloud vendors bring their own competing technologies to market. Ecosystems of partners and developers are also converging around industry standards and starting to package real-world solutions as templates. Owing to the relative newness of the technology, expect some vendor churn, fallout and consolidation ahead, but this should not prevent you from getting started.

We have come a long way from the DCS systems of the 1980s, which still serve a useful purpose. However, the pressing need for new rapid innovation has in many instances meant that these older proprietary approaches are no longer suited to the changing needs of manufacturers. There are now many simpler, more elegant and quicker to deploy tools for optimising plant efficiency. It is a wonderful time as vendors and manufacturers innovate together creating new opportunities to push efficiency and productivity boundaries even further.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Swiss watchmaking meets hypercar power
Horne Technologies Editor's Choice
The display of Bugatti’s upcoming luxury model, Tourbillon will be something truly special. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Reinventing the wheel
Editor's Choice
Once a curiosity in the early automotive age, in-wheel motors are now re-emerging with real promise. From electric cars to commercial vehicles and even aircraft, they are on the verge of transforming transportation engineering.

Read more...
Creating new magnets for electric motors
Editor's Choice
Innomotics, a global specialist in electric motors and large drive systems, is coordinating a consortium for a research project on ‘Integrated Product and Process Innovation for Electric Drives’.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
The power of water
Editor's Choice Electrical Power & Protection
The Alpenglow Hy4 is the world’s first water-based hydrogen combustion engine, offering a convincing alternative to traditional battery-electric vehicles and established hydrogen fuel cell designs.

Read more...
Optimising purification for green hydrogen production
Parker Hannifin - Sales Company South Africa Editor's Choice Electrical Power & Protection
Parker Hannifin delivers advanced purification and thermal management components that enhance green hydrogen production.

Read more...
A new chapter in geothermal engineering
Editor's Choice Electrical Power & Protection
The town of Geretsried in southern Germany has become a focal point in the global shift toward renewable energy. While the world’s attention often turns to wind turbines and solar panels, a quieter but no less powerful force is at work deep beneath the surface, geothermal energy.

Read more...
Harnessing the ocean with wave energy
Editor's Choice Electrical Power & Protection
Wave energy is emerging as one of the most promising yet underutilised renewable sources. Tapping into the rhythmic, predictable power of ocean waves, this technology offers a clean, reliable alternative to fossil fuels and a valuable complement to wind and solar energy.

Read more...
Leading the way to the all-electric mine
ABB South Africa Editor's Choice IT in Manufacturing
Decarbonising the mining sector requires more than just new technology. ABB eMine provides a strong portfolio of electrification and automation solutions, consulting, partnerships and technology applications to support mining operations to reduce emissions and achieve operational cost savings and superior efficiency.

Read more...
Speeding up warehouse automation
Rockwell Automation Editor's Choice Motion Control & Drives
Bastian Solutions designs and delivers world-class material handling systems. The company was engaged by a high-end global fashion brand to implement a new warehouse system. Bastian used Rockwell Automation Emulate3D digital twin software to test the system before it was installed and went live.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved