Analytical Instrumentation & Environmental Monitoring


More from less in solvent extraction processes

February 2018 Analytical Instrumentation & Environmental Monitoring

Copper has been used by humans from as early as 8000 BC. It was the first metal to be smelted from its ore 5000 BC, the first to be cast into a shape 4000 BC, and the first to be purposefully alloyed with another metal, tin, to create bronze in 3500 BC.

In the middle ages, the oxidised layer of copper was naturally leached by water, depleting the upper layers of oxidised ore and revealing the rich copper laden solutions. This prompted miners to dig deeper, heap the ore and leach it out. This is known as hydrometallurgical production, the extracted solvents can be electro-won, and almost pure copper anodes produced.

The pyrometallurgical method uses pulverisation, flotation, smelting and converting to produce anodes. The copper that is produced by precipitation in the leaching process can be added to the smelting process for further processing to anodes. During this cementation (iron precipitation) copper is produced by running the pregnant leach solution through a pile of scrap iron or steel. An electromechanical process takes place and the copper precipitates onto the iron/steel, which in turn dissolves into the solution. It detaches as flakes or powder.

The pregnant leachate that is produced from the process, will contain the leaching agent, either water or H2SO4 for oxide ores. Acid cure and acid-ferric cure are used for mixed ores. Some plants use an acid/kerosene mix. The process has to remove and recover the copper from the leachate, and remove impurities. This process has to be controlled, and as we know, when we measure, we can control.

Ores that have been mined, crushed and dumped on impervious pads, are usually sprinkled or sprayed with the leaching solution, in the heap leaching process. Flooding or trickle systems can be used for dump leaching. The pregnant liquor is then fed to a solvent extraction plant, which can be optimised by various methods.

Maximum extraction with minimum wastage

Endress+Hauser suggests that by measuring the pH, conductivity and interface levels, the process can be managed and optimised for maximum extraction, and minimum wastage.

Most important in the solvent extraction is detection and monitoring of the depth of the organic phase. The copper is trapped in the top layer. Automation is the norm in modern plants, since this does away with manual dipping, and the subsequent errors that it can produce. To this end, with the aid of Sensorfusion, Endress+Hauser has taken the reliability and accuracy of its guided wave radar and capacitance level, and combined them into one device, which will simultaneously provide a reliable and accurate measurement of the top and interface levels, even in emulsion layers.

To assure the correct metal extraction, plants need to measure the conductivity of the settling chamber. This measurement will ensure that it has control of the transition stage from organic to aqueous. If not correctly controlled, this may cause ‘mud’, and as a result plant downtime and wastage of additives. The Indumax CLS50D sensor and a CM44x is used for this measurement. The CLS50D is an inductive conductivity sensor that can withstand high temperatures and has high chemical resistance. It has the added advantage of having Memosense digital technology.

To control the addition of solution, and the returned aqueous raffinate, we need to know the pH values. For this we use the CPF81D PH sensor. It is a robust, low maintenance sensor with Memosense digital technology.

Uranium, gold, palladium and platinum are commodities that can go through a similar process, but with differences in the refining stages.

For more information contact Pieter Andjelkovic, Endress+Hauser, +27 (0)11 262 8000, [email protected], www.za.endress.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ensuring occupational health and safety in mining
Analytical Instrumentation & Environmental Monitoring
Probe Integrated Mining Technologies (Probe IMT) has partnered with M3SH Technology to offer state-of-the-art environmental monitoring solutions that address these dual requirements.

Read more...
Sustainability of surface water
Endress+Hauser South Africa Analytical Instrumentation & Environmental Monitoring
The sustainability of surface water is critical for South Africa’s economic development, social well-being and environmental health. Endress+Hauser has a full range of liquid analysis sensors and transmitters to measure important parameters and has an excellent global track record in water and wastewater process plants and various surface and industrial water monitoring sites.

Read more...
Keeping an eye on invisible radiation
Omniflex Remote Monitoring Specialists Analytical Instrumentation & Environmental Monitoring
At its peak in 1994, the energy generation capacity of the UK’s nuclear power stations was 12,7 GW across 16 plants. In 2024, the capacity has fallen to around 5 GW, and the number of stations is down to nine. However, this is far from the end of the story as spent nuclear fuel remains radioactive for centuries, and requires rigorous safety processes to safeguard against leaks.

Read more...
Cloud-based inventory management software
Endress+Hauser South Africa Level Measurement & Control
Netilion is an award-winning cloud-based IIoT ecosystem designed for industrial processes. It connects the physical and digital worlds to send valuable information from the field straight to your phone, tablet or other device.

Read more...
How wet steam undermines boiler efficiency
Endress+Hauser South Africa Temperature Measurement
Endress+Hauser understands the daily challenges and demands placed on energy and utility managers across the spectrum of steam generation, distribution and consumption activities. Its global team is committed to working with its partners to overcome these complexities, and particularly those that aim for a safe, economic and sustainable sitsce of steam energy production and delivery.

Read more...
Automated clean-in-place
Endress+Hauser South Africa Sensors & Transducers
A clean-in-place (CIP) process is integral to a food and beverage producer’s responsibility to deliver safe, high-quality products to consumers. However, as industries worldwide shift focus towards sustainability, CIP procedures face new challenges.

Read more...
Effective dust control in sugar processing
Analytical Instrumentation & Environmental Monitoring
BLT WORLD specialists work in conjunction with the global ScrapeTec team to offer dependable solutions for specific problems at the transfer points of conveyor systems in many industries where dust and material spillage are concerns, including the sugar sector.

Read more...
A benchmark for lubricant reliability in mining
Analytical Instrumentation & Environmental Monitoring
According to Craig FitzGerald from ISO-Reliability Partners, mines can save R500 000 or more on their yearly mill cleaning costs, while electricity consumption can be reduced by up to 12%, and lubricant consumption lowered up by up to 60% when using Bel-Ray Clear Gear lubricant.

Read more...
SICK and Endress+Hauser to join forces in process automation
Endress+Hauser South Africa News
German sensor company SICK, and Swiss measurement and automation technology specialist Endress+Hauser, want to intensify their cooperation. Both companies are aiming for a strategic partnership for SICK’s process automation business segment and have signed a joint memorandum of understanding.

Read more...
Accurate flowmeter for oil & gas
Endress+Hauser South Africa Flow Measurement & Control
Promass Q, the high-tech Coriolis flowmeter from Endress+Hauser, is now also available for larger pipe sizes with maximum flow rates between 850 and 2400 tph.

Read more...