IT in Manufacturing


Ethernet-based networks improve machine performance

October 2015 IT in Manufacturing

OEMs are increasingly using industrial networks to connect their HMIs, controllers, distributed I/O, instruments and sensors to each other within a machine or a robot. As a consequence, Ethernet is quickly becoming the network of choice for robot and machine builders OEMs and their customers. In addition, automation components suppliers are including Ethernet and IP connectivity on more and more of their devices, creating an ever expanding circle of Ethernet usage.

Why Ethernet?

Even the simplest of today’s production lines include a wide range of different machines and robots, most often supplied by a number of OEMs. Adding to the complexity is the fact that most machines and robots contain a number of automation components such as HMIs, controllers, motor drives, instruments and sensors. All of these components need to communicate not only with each other within a machine or robot, but often with other machines and robots to closely coordinate and optimise production. Two-way communication is also required among machines, robots, and customer control and communication systems. Fortunately, many Ethernet-friendly standards and protocols exist to simplify these communications. These include ISA-88/PackML (batch and control), ISA-95 (data integration) and ISA-99 (security).

Using standard Ethernet and common protocols as well as the abovementioned standards also makes it possible for each machine in an assembly line to communicate with the next unit in the line regarding its status and utilisation. If each piece of equipment in one or more assembly operations knows the status of its neighbours, it’s possible to make maximum use of each machine to optimise throughput across the facility by synchronising machine inputs and outputs.

Why industrial?

Because any system is only as good as the physical infrastructure on which it’s built, it’s imperative that the equipment chosen for the application is specifically designed for the environment in which it will be used. Industrial temperature ranges can cover the spectrum from -40 to greater than 70°C. Industrial plants also have many sources of EMI/RFI interference, including large power cables, big motors and other equipment such as robot welders. In addition equipment needs to be protected from humidity and moisture by specifying NEMA 4 or IP67 protection. It must also be able to withstand vibration covering a broad range of frequencies and amplitudes; and assembly lines incorporate a large number of moving parts such as robot arms, conveyors, and pick and place systems.

Just as important as selecting the right industrial grade components are the connections among the components. In the case of Ethernet, these connections are typically Cat 5e or Cat 6 cable. Physical cable integrity and electrical performance must be maintained or deterioration of the signals will lead to failure of the network.

Many machines and robots continually place Ethernet communication cables under duress by movement and the consequent cable flexing. Flex cycles cause stress on cables and connections, often resulting in premature failure. Data integrity can also be compromised because of changes to cables during these flexing operations, with the resulting risk that data communication interruptions will occur.

Fortunately, high flex industrial Ethernet cables are available that can operate reliably in continuous flex environments without signal interruption. These special cables are normally used to implement Ethernet on robots and machines with these types of requirements. As with industrial grade Ethernet components, upfront costs are somewhat higher for high flex as compared to standard cables, but the extra expense is well worth it to guarantee reliability at an acceptable level.

Ethernet is quickly becoming the standard in industrial settings. But because the plant environment isn’t the same as the office, both the design and the components must be appropriate for the task at hand. Extra cost spent up front to purchase industrially rated components and employ proper design expertise will be more than repaid over the life of the network in terms of more uptime and greater throughput of the manufacturing process.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Transforming battery manufacturing processes
IT in Manufacturing
Siemens and Hirano Tecseed, a Japanese machine builder, are partnering to transform battery manufacturing processes.

Read more...
From Trojan takeovers to ransomware roulette
IT in Manufacturing
Cisco’s Cyber Threat Trends Report offers a comprehensive and overview of the evolving cybersecurity landscape, leveraging its vast global reach through the analysis of DNS traffic.

Read more...
The road to decarbonisation in mining
IT in Manufacturing
The mining industry is a key player in global carbon emissions, and ABB’s eMine is at the forefront of efforts to drive the sector’s decarbonisation.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...
Siemens’ PAVE360 to support new Arm Zena Compute Subsystems
IT in Manufacturing
Siemens Digital Industries Software is expanding its longstanding relationship with Arm and adding support for the newly launched Arm Zena Compute Subsystems in its PAVE360 software, designed for software-defined vehicles

Read more...
Empowering OEMs in industrial automation
Schneider Electric South Africa IT in Manufacturing
Organisations are increasingly focusing on empowering OEMs within the industrial automation sector

Read more...
Fortifying the state in a time of cyber siege
IT in Manufacturing
In an era where borders are no longer physical, South Africa is being drawn into a new kind of conflict, one fought not with tanks and missiles, but with lines of code and silent intrusions. The digital battlefield is here, and cyber space has become the next frontier of conflict.

Read more...
Levelling up workplace safety - how gamification is changing the rules of training
IT in Manufacturing
Despite the best intentions, traditional safety training often falls short, with curricula either being too generic, too passive, or ultimately unmemorable. Enter gamification, a shift in training that is redefining how businesses train for safety and live by those principles.

Read more...
Reinventing data centre design: critical changes to meet surging
Schneider Electric South Africa IT in Manufacturing
AI technologies are pushing the boundaries of what is possible which, in turn, is presenting data centres with a whole new set of challenges. Fortunately, several options are emerging which include optimising design and infrastructure for efficiency, cooling and management systems

Read more...
Watts next - can IT save the planet
IT in Manufacturing
The digital age’s insatiable demand for computing power has collided with an urgent and pressing need for sustainability. As data centres and AI workloads consume unprecedented energy, IT providers are pivotal in redefining how technology intersects with environmental stewardship.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved