Analytical Instrumentation & Environmental Monitoring


Optimising ESL milk standardisation

August 2015 Analytical Instrumentation & Environmental Monitoring

Although the process steps involved in the production of drinking and extended shelf life (ESL) milk are different, fat standardisation is generally still taken care of indirectly in both cases using Coriolis flowmeters. A new method of fat standardisation using a non-contact, inline analysis device capable of measuring the fat content in ESL milk with extreme accuracy is introduced here.

The basics of milk production

To produce drinking milk with various minimum fat contents, the raw milk is separated in the dairy into skim milk (approx. 0,05% fat content) and cream. The Coriolis flowmeter is placed in the flow of cream to measure the fat content. In addition to measuring the direct mass flow, Coriolis flowmeters also measure the density of the product. The fat value is calculated using this density and a fixed formula.

However, the only reason this fat measurement is relatively accurate is because the fat content in the cream flow is sufficiently high. Measurements done in the drinking milk, where producers would actually like to measure the value, are not nearly accurate enough to regulate the fat content.

Using the current flow rates of skim milk and cream, it is possible to calculate how much cream must be added to achieve the desired fat content in the standardised milk. In addition to the inaccuracies of the measuring and final controlling devices, the approximate 0,02% fluctuation range of the fat value in skim milk plays a role when it comes to customer requirements for high accuracy. Consider also the many process steps involved in ESL milk production, whereby partial flows can be pasteurised, homogenised and micro filtered, it is easy to see why the inline measurement of fat content is advantageous.

Taking into account the various uncertainties regarding indirect fat standardisation, the real fat value must be regularly checked by way of sampling and laboratory measurements. These tests take a relatively long time in the laboratory, meaning intervention in the process is thus correspondingly delayed. In the case of deviations from the required fat content, the target value is manually changed and more or less cream is added accordingly.

Spectroscopic analysis simplifies the process

Krohne’s new Optiquad M is a spectroscopic analysis system well suited to the task of fat standardisation, as it performs continuous inline non-contact measurement of fat content directly in the drinking milk. In addition, it also measures the protein and lactose content in milk products. The Ammerland dairy processes approximately 3,3 million litres of raw milk per day and was looking for a solution to the problem of fat standardisation in ESL milk. Particular emphasis was placed on continuous accurate measurement to enable improved process control without time delay. The dairy installed an Optiquad M 4050 W. The analyser unit was installed directly in the production line by way of a standard Varinline process connection without bypass. This entire measuring section fulfils the high hygienic requirements and is FDA-compliant.

The analyser unit contains no moving parts, and the wetted parts are cleaned via CIP. The operating unit, built in a stainless steel housing, is installed in close proximity to the analyser and connected using a serial interface. Its purpose is to display the measurements, make them available to the control unit via 4-20 mA outputs and enable all entries and actions. To this end, the operating unit is fitted with a modern industrial PC featuring touchscreen operation.

The operating unit also takes care of any required optimisation of calibration. To do so, samples are first taken by way of the integrated sampling valve. During sampling, a button is activated to notify the analyser unit and the measurement, determined over the entire period of sampling, is saved in the operating unit. The reference value as determined in the laboratory is then entered. If several samples have been measured and entered, the current calibration can be optimised at the touch of a button.

The measurements of the Optiquad M were recorded over several months. The accuracy was found to be in the range of the reference measurements determined in-house and in independent laboratories. “Our confidence in the device grew when we heard this,” commented dairy production manager, Armin Tjards. “With Krohne’s solution we can measure the fat and protein content directly in the standardised ESL milk, in other words, exactly where we want to measure. We can now continuously look into the process which means that we were able to set the desired fat content precisely, even in the complex production processes of ESL milk.

Optiquad M functionality:

The analysis system uses optical spectroscopy to measure the contents of milk products continuously and without contact. In the process, light of varying wavelengths is coupled into the product through an optical window. The system simultaneously determines the values of up to four optical effects (transmission, scattering, fluorescence and refraction) which manifest in different ways depending on the substances in the product, and then uses them to calculate the amounts of protein, fat and lactose.

For more information contact John Alexander, Krohne SA, +27 (0)11 314 1391, j.alexander@krohne.com, www.krohne.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Electrical measurement and process analytics for hydrogen production
Technews Industry Guide: Sustainable Manufacturing 2021, Mecosa , Analytical Instrumentation & Environmental Monitoring
Knick products optimise the hydrogen production process and electrolyser operation.

Read more...
Non-Nuclear online slurry density measurement
Technews Industry Guide: Sustainable Manufacturing 2021, Allpronix , Analytical Instrumentation & Environmental Monitoring
When a local metal smelting operation had a requirement to remove manual sampling from its slurry line, Allpronix was approached to advise on a solution.

Read more...
Portable combustion gas analyser
Technews Industry Guide: Sustainable Manufacturing 2021, Elemental Analytics , Analytical Instrumentation & Environmental Monitoring
The E8500 Plus is a powerful and advanced portable emissions analyser, a complete, portable tool for EPA compliance and level emissions monitoring of boilers, engines and other combustion equipment.

Read more...
Continuous emissions monitoring in power plants
Technews Industry Guide: Sustainable Manufacturing 2021, Elemental Analytics , Analytical Instrumentation & Environmental Monitoring
The MCA 10 multi-component analysis system combines precise measurement technology with excellent long-term stability.

Read more...
Two-gas detection monitor
July 2021, Comtest , Analytical Instrumentation & Environmental Monitoring
New lightweight two-gas monitor offers more accurate alarms and minimises maintenance with a two-year runtime.

Read more...
Key factors for picking the optimal flowmeter
July 2021, KROHNE , Flow Measurement & Control
While a variety of factors impact meter performance, the most common culprits are flawed sizing and failing to choose the most appropriate technology.

Read more...
KROHNE – 100 years in the spirit of creativity
August 2021, KROHNE , News
When Ludwig Krohne founded the company in 1921, the first customers were a small number of steel producers from the Ruhr area.

Read more...
MAP – making the right choice for gas analysis
August 2021, Elemental Analytics , Analytical Instrumentation & Environmental Monitoring
Modified atmosphere packaging (MAP) is used within the food and pharmaceutical sectors to extend the shelf life of many products that would otherwise deteriorate quickly in the presence of oxygen.

Read more...
Advances in pipeline leak detection
June 2021, KROHNE , Maintenance, Test & Measurement, Calibration
The high rate of false alarms in standard pipeline leak detection systems can force system operators to waste labour chasing down problems that do not exist. Fortunately, newer technology provides an alternative.

Read more...
Accurate particle matter measurement
June 2021, GHM Messtechnik SA , Analytical Instrumentation & Environmental Monitoring
The PMsense datalogger has particular applications in smart city applications and the monitoring of particle matter pollutants found at industrial sites.

Read more...