IT in Manufacturing


Quantum refrigerator paves way for reliable quantum computers

February 2025 IT in Manufacturing

Quantum computers require extreme cooling to perform reliable calculations. One of the challenges preventing quantum computers from entering society is the difficulty of freezing the qubits to temperatures close to absolute zero. Now, researchers at Chalmers University of Technology, Sweden, and the University of Maryland, USA, have engineered a new type of refrigerator that can autonomously cool superconducting qubits to record low temperatures, paving the way for more reliable quantum computation.

Quantum computers have the potential to revolutionise fundamental technologies in various sectors of society, with applications in medicine, energy, encryption, AI, and logistics. While the building blocks of a classical computer – bits – can take a value of either 0 or 1, the most common building blocks in quantum computers – qubits – can have a value of 0 and 1 simultaneously. The phenomenon is called superposition and is one of the reasons why a quantum computer can perform parallel computations, resulting in enormous computational potential. However, the time a quantum computer can work on a calculation is still significantly constrained because it spends a lot of time correcting errors.

“Qubits, the building blocks of a quantum computer, are hypersensitive to their environment. Even extremely weak electromagnetic interference leaking into the computer could flip the value of the qubit randomly, causing errors and subsequently hindering quantum computation,” says Aamir Ali, research specialist in quantum technology at Chalmers University of Technology.

Demonstrates record low temperatures

Today, many quantum computers are based on superconducting electrical circuits that have zero resistance and therefore preserve information very well. For qubits to work without errors and for longer periods in such a system, they need to be cooled to a temperature close to absolute zero, equivalent to minus 273.15 degrees Celsius or zero Kelvin. The extreme cold puts the qubits into their lowest energy state, known as the ground state, equivalent to value 0, a prerequisite for initiating a calculation.

The cooling systems used today, namely dilution refrigerators, bring the qubits to about 50 millikelvin above absolute zero. The closer a system approaches to absolute zero, the more difficult further cooling is. According to the laws of thermodynamics, no finite process can cool any system to absolute zero. Now, the researchers have constructed a new type of quantum refrigerator that can complement the dilution refrigerator and autonomously cool superconducting qubits to record-low temperatures. The quantum refrigerator is described in an article in Nature Physics journal.

“The quantum refrigerator is based on superconducting circuits and is powered by heat from the environment. It can cool the target qubit to 22 millikelvin, without external control. This paves the way for more reliable and error-free quantum computations that require less hardware overload,” says Aamir Ali, lead author of the study. “With this method, we were able to increase the qubit’s probability to be in the ground state before computation to 99,97%, which is significantly better than what previous techniques could achieve, that is between 99,80% and 99,92%. This might seem like a small difference, but when performing multiple computations, it compounds into a major performance boost in the efficiency of quantum computers.”

Powered naturally by the environment

The refrigerator utilises interactions between different qubits, specifically between the target qubit to be cooled and the two quantum bits used for cooling. Next to one of the qubits, a warm environment is engineered to serve as a hot thermal bath. The hot thermal bath gives energy to one of the quantum refrigerator’s superconducting qubits and powers the quantum refrigerator.

“Energy from the thermal environment, channelled through one of the quantum refrigerator’s two qubits, pumps heat from the target qubit into the quantum refrigerator’s second qubit, which is cold. That cold qubit is thermalised to a cold environment into which the target qubit’s heat is ultimately dumped,” says Nicole Yunger Halpern, NIST physicist and adjunct assistant professor of physics and IPST at the University of Maryland, USA. The system is autonomous in that once it is started, it operates without external control and is powered by the heat that naturally arises from the temperature difference between two thermal baths.

“Our work is the first demonstration of an autonomous quantum thermal machine executing a practically useful task. We originally intended this experiment as a proof of concept, so we were pleasantly surprised when we found out that the performance of the machine surpasses all existing reset protocols in cooling down the qubit to record-low temperatures,” says Simone Gasparinetti, associate professor at Chalmers University of Technology and lead author of the study.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Data centre design powers up for AI, digital twins and adaptive liquid cooling
IT in Manufacturing
The Vertiv Frontiers report, which draws on expertise from across the organisation, details the technology trends driving current and future data centre innovation, from powering up for AI, to digital twins, to adaptive liquid cooling.

Read more...
How digital infrastructure design choices will decide who wins in AI
Schneider Electric South Africa IT in Manufacturing
As AI drives continues to disrupt industries across the world, the race is no longer just about smarter models or better data. It’s about building infrastructure powerful enough to support innovation at scale.

Read more...
How quantum computing and AI are driving the next wave of cyber defence innovation
IT in Manufacturing
We are standing at the edge of a new cybersecurity frontier, shaped by quantum computing, AI and the ever-expanding IIoT. To stay ahead of increasingly sophisticated threats, organisations must embrace a new paradigm that is proactive, integrated and rooted in zero-trust architectures.

Read more...
2026: The Year of AI execution for South African businesses
IT in Manufacturing
As we start 2026, artificial intelligence in South Africa is entering a new era defined not by experimentation, but by execution. Across the region, the conversation is shifting from “how do we build AI?” to “how do we power, govern and scale it responsibly?”

Read more...
AIoT drives transformation in manufacturing and energy industries
IT in Manufacturing
AIoT, the convergence of artificial intelligence and the Internet of Things, is enhancing efficiency, security and decision making at manufacturing, industrial and energy companies worldwide

Read more...
Today’s advanced safety system is but the beginning
Schneider Electric South Africa IT in Manufacturing
Industrial safety systems have come a long way since the days of hardwired emergency shutdowns. Today, safety systems are not just barriers against risk; they are enablers of safer operations.

Read more...
Siemens brings the industrial metaverse to life
Siemens South Africa IT in Manufacturing
Siemens has announced a new software solution that builds Industrial metaverse environments at scale, empowering organisations to apply industrial AI, simulation and real-time physical data to make decisions virtually, at speed and at scale.

Read more...
Five key insights we gained about AI in 2025
IT in Manufacturing
As 2025 draws to a close, African businesses can look back on one of the most pivotal years in AI adoption to date as organisations tested, deployed and learned from AI at pace. Some thrived and others stumbled. But the lessons that emerged are clear.

Read more...
South Africa’s AI development ranks 63rd in the world
IT in Manufacturing
The seventh edition of the Digital Quality of Life Index by cybersecurity company, Surfshark ranks South Africa 75th globally.

Read more...
Optimising MRO operations through artificial intelligence
RS South Africa IT in Manufacturing
AI is reshaping industrial operations at every level in the maintenance, repair and operations supply chain, where it is driving efficiency, predictive insight and smarter decision making.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved