IT in Manufacturing


How AI and ML are enhancing utility management with advanced predictive maintenance

February 2025 IT in Manufacturing

The integration of artificial intelligence (AI) and machine learning (ML) is significantly transforming the management of utilities by providing advanced technology that delivers real-time insights into the operational conditions of facilities. This enhances situational awareness and enables more informed decision-making in utility management, enabling utilities to monitor their operations more effectively by transitioning from routine (preventive) to predictive maintenance.

Utilities, especially municipalities in South Africa, have varying degrees of visibility into their network infrastructure. This depends on factors such as the age of the existing infrastructure, the sophistication of their network planning and implementation of connectivity technologies on the network assets

This visibility is crucial for leveraging AI and ML, as AI is built on algorithms derived from ML, which requires access to substantial amounts of high-quality, accurate data across the utility’s grid. With the right data, ML can transform utility uptime by providing deeper insights into asset conditions.


Vladimir Milovanovic, vice president of power systems, Anglophone Africa at Schneider Electric.

Leveraging this enables a shift from rigid, time-based maintenance to a more predictive, proactive approach, resulting in optimised use of (always limited) field resources, reduced outages and enhanced operational efficiency and customer satisfaction. However, it all starts with building that foundational network visibility and data infrastructure.

Preventing equipment failure

Preventive maintenance is the most common strategy used by utilities. This time-based approach has the utility define the key components of its network and analysing factors like mean time to failure, statistical data, available workforce and operational volume. The goal is to derive a maintenance schedule that prevents equipment failure and downtime.

However, this is very difficult to achieve in practice as utilities are often constrained by limited resources, and the information they have may not be fully accurate or account for the evolving nature of their network. As a result, preventive maintenance frequently devolves into reactive maintenance, where action is only taken after a component has already failed, resulting in downtime. This impacts key performance metrics and customer satisfaction.

The better approach is predictive maintenance, which leverages data and analytics to proactively predict and prevent asset failures. However, establishing the right data infrastructure is crucial to enabling this strategy.

By transitioning to an AI-powered predictive maintenance strategy, as opposed to the more traditional time-based preventive maintenance approach, utilities can reduce asset maintenance costs by optimising workforce management and resource scheduling, maximise the impact of available field resources, and improve customer satisfaction.

Additionally, utilities can also benefit from enhanced safety and compliance with regulations, including sustainability and environmental friendliness by mitigating risks like fires, oil spill and threats to operator and public safety.

However, the success of predictive maintenance depends on the quality, quantity and duration of data collected. More data over time enables deeper and more impactful trend analysis. The first step of the predictive maintenance value chain is detecting abnormal asset behaviour, which requires extensive grid connectivity to feed rich data inputs.

Real-time asset visibility

The more sensors and natively connected devices integrated, the better the utility’s real-time asset visibility. This data-driven foundation then powers the subsequent predictive maintenance steps, but it all starts with the initial detection of abnormal conditions, making connectivity and data collection essential for an effective predictive maintenance programme.

Yet, transitioning to predictive maintenance is not an ‘all or nothing’ approach. Rather, it requires the utility to take a long-term, strategic view of its network and future needs. The first step is equipping the utility’s most critical assets with the right technologies to leverage predictive maintenance models, even if in some cases it means retrofitting. This provides the data foundation to start implementing AI-based predictive maintenance.

Concurrently, the utility can then dedicate more resources to address known problematic or high-risk areas of the network that may not yet have the necessary facilities for predictive maintenance. By building out this digital roadmap and prioritising the right assets, the utility can start realising savings through optimal resource use and minimised downtime, gradually transitioning away from reactive maintenance.

To transition to a predictive maintenance approach, utilities should work with a trusted technology partner who can assist them in developing a realistic and achievable digital roadmap. This digital roadmap is key to implementing the software layer, which is crucial for harnessing data and gaining real-time visibility and insights that empower utilities to make quick and efficient operational decisions.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Schneider Electric’s Five-Pillar Strategy takes the guesswork out of equip
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s Field Service Cycle, otherwise known as the Five-Pillar Strategy, is a structured approach to managing the lifecycle of equipment to prolong asset lifespan while reducing the total cost of ownership for customers.

Read more...
Why utilities must prioritise maintenance of SA’s remote data
Schneider Electric South Africa Electrical Power & Protection
The story of power generation is more than meets the eye. Beyond energy distribution and the infrastructure are invisible, point of presence data centres located the remotest parts of our country that play a fundamental role in keeping systems running

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...
Laying the groundwork in IT/OT
IT in Manufacturing
In the realm of manufacturing, the core mandate is to deliver value to stakeholders. For many in the industry, this is best achieved through a risk-averse approach. Only upon establishing a robust foundation should a business consider venturing into advanced optimisation or cutting-edge technological innovations such as industrial AI.

Read more...
Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
UPS systems are key to keeping SA’s automotive industry up and running
Schneider Electric South Africa Electrical Power & Protection
During loadshedding, PLCs and OT systems often fail, not because they are directly tied to the factory’s core manufacturing process, but because they are now an integral part of IT infrastructure. When an IT system shuts down, the impact is far more complex than simply restarting machinery.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved