IT in Manufacturing


How AI and ML are enhancing utility management with advanced predictive maintenance

February 2025 IT in Manufacturing

The integration of artificial intelligence (AI) and machine learning (ML) is significantly transforming the management of utilities by providing advanced technology that delivers real-time insights into the operational conditions of facilities. This enhances situational awareness and enables more informed decision-making in utility management, enabling utilities to monitor their operations more effectively by transitioning from routine (preventive) to predictive maintenance.

Utilities, especially municipalities in South Africa, have varying degrees of visibility into their network infrastructure. This depends on factors such as the age of the existing infrastructure, the sophistication of their network planning and implementation of connectivity technologies on the network assets

This visibility is crucial for leveraging AI and ML, as AI is built on algorithms derived from ML, which requires access to substantial amounts of high-quality, accurate data across the utility’s grid. With the right data, ML can transform utility uptime by providing deeper insights into asset conditions.


Vladimir Milovanovic, vice president of power systems, Anglophone Africa at Schneider Electric.

Leveraging this enables a shift from rigid, time-based maintenance to a more predictive, proactive approach, resulting in optimised use of (always limited) field resources, reduced outages and enhanced operational efficiency and customer satisfaction. However, it all starts with building that foundational network visibility and data infrastructure.

Preventing equipment failure

Preventive maintenance is the most common strategy used by utilities. This time-based approach has the utility define the key components of its network and analysing factors like mean time to failure, statistical data, available workforce and operational volume. The goal is to derive a maintenance schedule that prevents equipment failure and downtime.

However, this is very difficult to achieve in practice as utilities are often constrained by limited resources, and the information they have may not be fully accurate or account for the evolving nature of their network. As a result, preventive maintenance frequently devolves into reactive maintenance, where action is only taken after a component has already failed, resulting in downtime. This impacts key performance metrics and customer satisfaction.

The better approach is predictive maintenance, which leverages data and analytics to proactively predict and prevent asset failures. However, establishing the right data infrastructure is crucial to enabling this strategy.

By transitioning to an AI-powered predictive maintenance strategy, as opposed to the more traditional time-based preventive maintenance approach, utilities can reduce asset maintenance costs by optimising workforce management and resource scheduling, maximise the impact of available field resources, and improve customer satisfaction.

Additionally, utilities can also benefit from enhanced safety and compliance with regulations, including sustainability and environmental friendliness by mitigating risks like fires, oil spill and threats to operator and public safety.

However, the success of predictive maintenance depends on the quality, quantity and duration of data collected. More data over time enables deeper and more impactful trend analysis. The first step of the predictive maintenance value chain is detecting abnormal asset behaviour, which requires extensive grid connectivity to feed rich data inputs.

Real-time asset visibility

The more sensors and natively connected devices integrated, the better the utility’s real-time asset visibility. This data-driven foundation then powers the subsequent predictive maintenance steps, but it all starts with the initial detection of abnormal conditions, making connectivity and data collection essential for an effective predictive maintenance programme.

Yet, transitioning to predictive maintenance is not an ‘all or nothing’ approach. Rather, it requires the utility to take a long-term, strategic view of its network and future needs. The first step is equipping the utility’s most critical assets with the right technologies to leverage predictive maintenance models, even if in some cases it means retrofitting. This provides the data foundation to start implementing AI-based predictive maintenance.

Concurrently, the utility can then dedicate more resources to address known problematic or high-risk areas of the network that may not yet have the necessary facilities for predictive maintenance. By building out this digital roadmap and prioritising the right assets, the utility can start realising savings through optimal resource use and minimised downtime, gradually transitioning away from reactive maintenance.

To transition to a predictive maintenance approach, utilities should work with a trusted technology partner who can assist them in developing a realistic and achievable digital roadmap. This digital roadmap is key to implementing the software layer, which is crucial for harnessing data and gaining real-time visibility and insights that empower utilities to make quick and efficient operational decisions.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Unlocking mining efficiency with advanced processing control
IT in Manufacturing
ABB’s Advanced Process Control system, powered by its Expert Optimizer platform, is emerging as a key enabler of smarter, more efficient mining operations.

Read more...
Hybrid DCS for an evolving industrial landscape
Schneider Electric South Africa PLCs, DCSs & Controllers
Today’s industrial automation continues to evolve at a blistering speed, which means traditional DCSs have to keep up to ensure continuous integration into modern, digital infrastructure.

Read more...
Open control technology reduces energy consumption and carbon footprint.
Beckhoff Automation IT in Manufacturing
The Swedish company Airwatergreen AB is breaking new ground in the dehumidification of air in industrial buildings and warehouses. PC-based control from Beckhoff regulates the innovative process.

Read more...
Harnessing AI and satellite imagery to estimate water levels in dams
IT in Manufacturing
Farmers and water managers often struggle to accurately estimate and monitor the available water in dams. To address the challenge, International Water Management Institute researchers have worked with Digital Earth Africa to create an innovation that uses satellite images and AI to get timely and accurate dam volume measurements.

Read more...
Why industry should enter the world of operator training simulators
Schneider Electric South Africa IT in Manufacturing
System-agnostic operator training simulator (OTS) software is a somewhat unsung hero of industry that trains plant operators in a virtual world that mirrors real-world operations. The benefits are multiple.

Read more...
Track busway for scalable data centre power delivery
IT in Manufacturing
The latest generation Legrand Data Centre Track Busway technology addresses the operational pressures facing today’s high-density, AI-intensive computing environments and is being well received by data centre facilities around the world.

Read more...
Energy audits pave the pathway to sustainability and savings
Schneider Electric South Africa Electrical Power & Protection
Energy audits serve as essential tools for businesses looking to reduce costs and meet environmental targets. By analysing energy consumption across systems such as lighting, HVAC, ICT and water infrastructure, audits identify inefficiencies and quantify carbon footprints, enabling data-driven decisions for operational and financial optimisation.

Read more...
Poor heat management in data centre design
IT in Manufacturing
Designing a world-class data centre goes beyond simply keeping servers on during load shedding; it is about ensuring they run efficiently, reliably, and within the precise environmental conditions they were built and designed for.

Read more...
Schneider Electric unveils new range of circuit breakers
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has launched its new MasterPacT MTZ Active range of circuit breakers in South Africa. This is a revolutionary new circuit breaker designed to set new benchmarks for safety, efficiency and sustainability while ensuring business continuity.

Read more...
It’s time to fight AI with AI in the battle for cyber resilience
IT in Manufacturing
Cybercrime is evolving rapidly, and the nature of cyber threats has shifted dramatically. Attacks are now increasingly powered by AI, accelerating their speed, scale and sophistication. Cybersecurity needs to become part of business-critical strategy, powered by AI to match attackers’ speed with smarter, faster and more adaptive defences.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved