IT in Manufacturing


How AI and ML are enhancing utility management with advanced predictive maintenance

February 2025 IT in Manufacturing

The integration of artificial intelligence (AI) and machine learning (ML) is significantly transforming the management of utilities by providing advanced technology that delivers real-time insights into the operational conditions of facilities. This enhances situational awareness and enables more informed decision-making in utility management, enabling utilities to monitor their operations more effectively by transitioning from routine (preventive) to predictive maintenance.

Utilities, especially municipalities in South Africa, have varying degrees of visibility into their network infrastructure. This depends on factors such as the age of the existing infrastructure, the sophistication of their network planning and implementation of connectivity technologies on the network assets

This visibility is crucial for leveraging AI and ML, as AI is built on algorithms derived from ML, which requires access to substantial amounts of high-quality, accurate data across the utility’s grid. With the right data, ML can transform utility uptime by providing deeper insights into asset conditions.


Vladimir Milovanovic, vice president of power systems, Anglophone Africa at Schneider Electric.

Leveraging this enables a shift from rigid, time-based maintenance to a more predictive, proactive approach, resulting in optimised use of (always limited) field resources, reduced outages and enhanced operational efficiency and customer satisfaction. However, it all starts with building that foundational network visibility and data infrastructure.

Preventing equipment failure

Preventive maintenance is the most common strategy used by utilities. This time-based approach has the utility define the key components of its network and analysing factors like mean time to failure, statistical data, available workforce and operational volume. The goal is to derive a maintenance schedule that prevents equipment failure and downtime.

However, this is very difficult to achieve in practice as utilities are often constrained by limited resources, and the information they have may not be fully accurate or account for the evolving nature of their network. As a result, preventive maintenance frequently devolves into reactive maintenance, where action is only taken after a component has already failed, resulting in downtime. This impacts key performance metrics and customer satisfaction.

The better approach is predictive maintenance, which leverages data and analytics to proactively predict and prevent asset failures. However, establishing the right data infrastructure is crucial to enabling this strategy.

By transitioning to an AI-powered predictive maintenance strategy, as opposed to the more traditional time-based preventive maintenance approach, utilities can reduce asset maintenance costs by optimising workforce management and resource scheduling, maximise the impact of available field resources, and improve customer satisfaction.

Additionally, utilities can also benefit from enhanced safety and compliance with regulations, including sustainability and environmental friendliness by mitigating risks like fires, oil spill and threats to operator and public safety.

However, the success of predictive maintenance depends on the quality, quantity and duration of data collected. More data over time enables deeper and more impactful trend analysis. The first step of the predictive maintenance value chain is detecting abnormal asset behaviour, which requires extensive grid connectivity to feed rich data inputs.

Real-time asset visibility

The more sensors and natively connected devices integrated, the better the utility’s real-time asset visibility. This data-driven foundation then powers the subsequent predictive maintenance steps, but it all starts with the initial detection of abnormal conditions, making connectivity and data collection essential for an effective predictive maintenance programme.

Yet, transitioning to predictive maintenance is not an ‘all or nothing’ approach. Rather, it requires the utility to take a long-term, strategic view of its network and future needs. The first step is equipping the utility’s most critical assets with the right technologies to leverage predictive maintenance models, even if in some cases it means retrofitting. This provides the data foundation to start implementing AI-based predictive maintenance.

Concurrently, the utility can then dedicate more resources to address known problematic or high-risk areas of the network that may not yet have the necessary facilities for predictive maintenance. By building out this digital roadmap and prioritising the right assets, the utility can start realising savings through optimal resource use and minimised downtime, gradually transitioning away from reactive maintenance.

To transition to a predictive maintenance approach, utilities should work with a trusted technology partner who can assist them in developing a realistic and achievable digital roadmap. This digital roadmap is key to implementing the software layer, which is crucial for harnessing data and gaining real-time visibility and insights that empower utilities to make quick and efficient operational decisions.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Sustainable energy management
Siemens South Africa IT in Manufacturing
Utilising its innovative ONE approach technology, Siemens provides complete transparency on resource consumption and offers data-driven optimisation recommendations for sustainable energy management.

Read more...
Paving the way for a carbon-neutral future in South Africa
IT in Manufacturing
At ABB Electrification, we believe the infrastructure of the future must do more than support daily operations, it must anticipate them. We are committed to building intelligent systems that connect and optimise infrastructure across sectors.

Read more...
Protecting buildings’ embodied carbon with retrofitted systems
Schneider Electric South Africa Sensors & Transducers
The World Economic Forum has said that around 80% of the buildings in existence will still be around in 2050; it is therefore essential that in order to combat climate change we retrofit them for energy efficiency.

Read more...
Three decarbonisation myths and how organisations can debunk them
Schneider Electric South Africa Electrical Power & Protection
A UN Climate Change Report revealed that the world is on track to miss its 2050 net zero targets, with temperatures expected to increase by over 2,4°C by 2100. To help shift positive intent to concrete action, Schneider Electric outlined three of the most common myths surrounding decarbonisation and how organisations can get started on their decarbonisation journey.

Read more...
Africa’s hidden AI advantage
IT in Manufacturing
Through my work implementing AI systems across three continents, I’ve become convinced that Africa’s unique context demands urgent AI adoption. Successful implementation requires local expertise to understand resource constraints as design parameters to create the innovations that make technology truly work under real-world conditions.

Read more...
Siemens Xcelerator empowers space-tech pioneer, Skyroot Aerospace
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Skyroot Aerospace, a leading private space launch service company in India, has adopted Polarion software from the Siemens Xcelerator portfolio to digitally transform its software development processes and enhance efficiency as it aims to accelerate access to space for its customers worldwide.

Read more...
Water is running out, is your ESG strategy ready?
IT in Manufacturing
Water is one of the most critical yet undervalued resources in modern business. Water stewardship asks businesses to understand their water footprint across the entire value chain and to engage with others who share the same water resources.

Read more...
Cybersecurity in 2025: Six trends to watch
IT in Manufacturing
Rockwell Automation’s?10th?State?of?Smart?Manufacturing report finds that cybersecurity risks are a major, ever-present obstacle, and are now the third-largest impediment to growth in the next 12?months.

Read more...
The state of the smart buildings market in 2025
IT in Manufacturing
Smart buildings are entering a transformative phase, driven by sustainability goals, technological innovation and evolving user expectations. According to ABI Research’s latest whitepaper, the sector is undergoing a strategic overhaul across key areas like retrofitting, energy efficiency, data-driven operations and smart campus development.

Read more...
Digital twin for Bavaria’s National Theatre
Siemens South Africa IT in Manufacturing
Siemens and the Bavarian State Opera are digitalising the acoustics in Bavaria’s National Theatre in Munich, Germany. The result is a digital twin that simulates sound effects, orchestral setups and venue configurations in a realistic 3D acoustic model so that musicians, the director and conductors can assess a concert hall’s acoustics even before the first rehearsal.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved