IT in Manufacturing


AI is driving data centres to the edge

April 2024 IT in Manufacturing

The data centre has become the cornerstone that links our digitally interconnected world. At the same time, the rapid growth and application of artificial intelligence (AI) and machine learning (ML) is shaping the design and operation of data centres. The training requirements associated with AI are driving new chip and server technologies and the need for extreme rack power densities. The distinction between training and inference is critical when designing AI systems. Training workloads are used to train AI models like large language models (LLMs). These workloads require massive amounts of data fed to specialised servers with processors known as accelerators.


Ben Selier, vice president, Secure Power, Anglophone Africa at Schneider Electric.

Inference models might be deployed on edge devices or cloud servers, depending on the application’s needs, and take the previously trained AI model into production to predict the output of new queries (inputs). This demand for high-performance computing has led to increased requirements for powerful servers, GPUs and other specialised hardware within data centres to support workloads.

At the same time, the rise of edge computing, where computing resources are brought closer to the location where data is generated, is driven in part by AI applications. Edge data centres are deployed to reduce latency and enhance the performance of AI applications in scenarios where real-time processing is critical.

The servers supporting these AI applications use advanced AI chipsets, more commonly known as AI accelerators. These chipsets play a crucial role in enhancing the performance of AI applications across various domains.

Energy consumption and demand for power

Modern data centres use high-density servers and equipment that demand more power for processing. This leads to concentrated energy usage in smaller spaces, increasing the overall energy footprint, which can raise concerns about the amount of energy required to process AI operations.

For example, if your AI model is operating emergency vehicle routing, it will need to process high-definition videos and traffic patterns to perform real-time operations to clear the traffic. This would probably be an IT network of high speed, or networked edge AI data centres that could process a larger amount of data and deliver real time decisions and predictions. As the dependence on AI continues, new technologies and techniques will be deployed to make AI faster and more accurate and efficient.

One of these techniques is moving compressed models to the edge in the form of edge AI data centres. This will enable businesses to match the application to the model and optimise performance and the energy use.

The rapid growth in data traffic

The emergence of autonomous AI agents and decision-making programs holds the potential to revolutionise various aspects of business operations. These intelligent programs perform tasks independently, adapting and learning from its environment.

With increasing AI-driven automation, data centre employees can then automate routine tasks, reduce manual workloads and enhance overall efficiency, as responsibilities such as server system maintenance or system monitoring can be handled by these intelligence programs.

AI and data centre evolution

As AI technology advances, it will continue to influence the design and operation of data centres. While these advancements bring efficiency and innovation, this also poses challenges related to energy consumption, power and cooling systems.

This relentless advancement of AI is only going to continue, and to meet these evolving needs, the data centre industry needs to adapt. Schneider Electric offers guidance on best practices for embracing scalable and flexible infrastructure design to support intensive AI workloads. Strategies include deploying high-efficiency and high-capacity power systems and liquid cooling systems, 48U wide enclosures, upgrading hardware, and data centre infrastructure management.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Schneider Electric’s Five-Pillar Strategy takes the guesswork out of equip
Schneider Electric South Africa IT in Manufacturing
Schneider Electric’s Field Service Cycle, otherwise known as the Five-Pillar Strategy, is a structured approach to managing the lifecycle of equipment to prolong asset lifespan while reducing the total cost of ownership for customers.

Read more...
Why utilities must prioritise maintenance of SA’s remote data
Schneider Electric South Africa Electrical Power & Protection
The story of power generation is more than meets the eye. Beyond energy distribution and the infrastructure are invisible, point of presence data centres located the remotest parts of our country that play a fundamental role in keeping systems running

Read more...
Enhancing operational safety and efficiency through advanced risk-based modelling
IT in Manufacturing
Now, more than ever, capital and operational cost can be reduced while enhancing operational safety and increasing production uptime by applying transformative methods such as Computational Fluid Dynamics modelling.

Read more...
Laying the groundwork in IT/OT
IT in Manufacturing
In the realm of manufacturing, the core mandate is to deliver value to stakeholders. For many in the industry, this is best achieved through a risk-averse approach. Only upon establishing a robust foundation should a business consider venturing into advanced optimisation or cutting-edge technological innovations such as industrial AI.

Read more...
Looking into the future of machine vision
Omron Electronics IT in Manufacturing
Artificial intelligence (AI) is driving a significant transformation in all areas of industrial automation, and machine vision is no exception. Omron’s AI-powered machine vision systems seamlessly integrate state-of-the-art algorithms, enabling machines to analyse and interpret visual data meticulously.

Read more...
Driving digital transformation in the truck industry
Siemens South Africa IT in Manufacturing
Tatra Trucks, a leading truck manufacturer in Czechia, has adopted the Siemens Xcelerator portfolio of industry software including Teamcenter software for product lifecycle management and the Mendix low code platform to help increase production volume and strengthen its ability to manufacture vehicles that meet specific customer requirements.

Read more...
Opinion piece: Digital twins in manufacturing – design, optimise and expand
Schneider Electric South Africa IT in Manufacturing
Digital twin technology can help create better products, fast. It can also transform the work of product development. This strong statement from McKinsey reinforces how far digital twins have come in manufacturing.

Read more...
UPS systems are key to keeping SA’s automotive industry up and running
Schneider Electric South Africa Electrical Power & Protection
During loadshedding, PLCs and OT systems often fail, not because they are directly tied to the factory’s core manufacturing process, but because they are now an integral part of IT infrastructure. When an IT system shuts down, the impact is far more complex than simply restarting machinery.

Read more...
Asset tracking is key to driving operational excellence and sustainable growth
Schneider Electric South Africa IT in Manufacturing
Asset tracking plays a critical role in the success of industrial businesses. By effectively managing and monitoring assets, companies can optimise their operations, ensuring that resources are used efficiently. This leads to improved productivity and reduced costs.

Read more...
Siemens democratises AI-driven PCB design for small and medium electronics teams
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software is making its AI-enhanced electronic systems design technology more accessible to small and mid-sized businesses with PADS Pro Essentials software and Xpedition Standard software.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved